| Metamath
Proof Explorer Theorem List (p. 140 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | modsubmod 13901 | The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
| Theorem | modsubmodmod 13902 | The difference of a real number modulo a positive real number and another real number modulo this positive real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) | ||
| Theorem | 2txmodxeq0 13903 | Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ (𝑋 ∈ ℝ+ → ((2 · 𝑋) mod 𝑋) = 0) | ||
| Theorem | 2submod 13904 | If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | modifeq2int 13905 | If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) | ||
| Theorem | modaddmodup 13906 | The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))) | ||
| Theorem | modaddmodlo 13907 | The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))) | ||
| Theorem | modmulmod 13908 | The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
| Theorem | modmulmodr 13909 | The product of an integer and a real number modulo a positive real number equals the product of the integer and the real number modulo the positive real number. (Contributed by Alexander van der Vekens, 9-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀)) | ||
| Theorem | modaddmulmod 13910 | The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) ∧ 𝑀 ∈ ℝ+) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀)) | ||
| Theorem | moddi 13911 | Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶))) | ||
| Theorem | modsubdir 13912 | Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴 − 𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))) | ||
| Theorem | modeqmodmin 13913 | A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) | ||
| Theorem | modirr 13914 | A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) | ||
| Theorem | modfzo0difsn 13915* | For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) | ||
| Theorem | modsumfzodifsn 13916 | The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | ||
| Theorem | modlteq 13917 | Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | addmodlteq 13918 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. A much shorter proof exists if the "divides" relation ∥ can be used, see addmodlteqALT 16302. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | om2uz0i 13919* | The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐺‘∅) = 𝐶 | ||
| Theorem | om2uzsuci 13920* | The value of 𝐺 (see om2uz0i 13919) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) | ||
| Theorem | om2uzuzi 13921* | The value 𝐺 (see om2uz0i 13919) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | ||
| Theorem | om2uzlti 13922* | Less-than relation for 𝐺 (see om2uz0i 13919). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
| Theorem | om2uzlt2i 13923* | The mapping 𝐺 (see om2uz0i 13919) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | ||
| Theorem | om2uzrani 13924* | Range of 𝐺 (see om2uz0i 13919). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ ran 𝐺 = (ℤ≥‘𝐶) | ||
| Theorem | om2uzf1oi 13925* | 𝐺 (see om2uz0i 13919) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) | ||
| Theorem | om2uzisoi 13926* | 𝐺 (see om2uz0i 13919) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 Isom E , < (ω, (ℤ≥‘𝐶)) | ||
| Theorem | om2uzoi 13927* | An alternative definition of 𝐺 in terms of df-oi 9470. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) ⇒ ⊢ 𝐺 = OrdIso( < , (ℤ≥‘𝐶)) | ||
| Theorem | om2uzrdg 13928* | A helper lemma for the value of a recursive definition generator on upper integers (typically either ℕ or ℕ0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. Normally 𝐹 is a function on the partition, and 𝐴 is a member of the partition. See also comment in om2uz0i 13919. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ ω → (𝑅‘𝐵) = 〈(𝐺‘𝐵), (2nd ‘(𝑅‘𝐵))〉) | ||
| Theorem | uzrdglem 13929* | A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) | ||
| Theorem | uzrdgfni 13930* | The recursive definition generator on upper integers is a function. See comment in om2uzrdg 13928. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ 𝑆 Fn (ℤ≥‘𝐶) | ||
| Theorem | uzrdg0i 13931* | Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13928. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝑆‘𝐶) = 𝐴 | ||
| Theorem | uzrdgsuci 13932* | Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 13928. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐶 ∈ ℤ & ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) & ⊢ 𝑆 = ran 𝑅 ⇒ ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆‘𝐵))) | ||
| Theorem | ltweuz 13933 | < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ < We (ℤ≥‘𝐴) | ||
| Theorem | ltwenn 13934 | Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
| ⊢ < We ℕ | ||
| Theorem | ltwefz 13935 | Less than well-orders a set of finite integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
| ⊢ < We (𝑀...𝑁) | ||
| Theorem | uzenom 13936 | An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → 𝑍 ≈ ω) | ||
| Theorem | uzinf 13937 | An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin) | ||
| Theorem | nnnfi 13938 | The set of positive integers is infinite. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ¬ ℕ ∈ Fin | ||
| Theorem | uzrdgxfr 13939* | Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω) & ⊢ 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω) & ⊢ 𝐴 ∈ ℤ & ⊢ 𝐵 ∈ ℤ ⇒ ⊢ (𝑁 ∈ ω → (𝐺‘𝑁) = ((𝐻‘𝑁) + (𝐴 − 𝐵))) | ||
| Theorem | fzennn 13940 | The cardinality of a finite set of sequential integers. (See om2uz0i 13919 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (◡𝐺‘𝑁)) | ||
| Theorem | fzen2 13941 | The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | ||
| Theorem | cardfz 13942 | The cardinality of a finite set of sequential integers. (See om2uz0i 13919 for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝑁 ∈ ℕ0 → (card‘(1...𝑁)) = (◡𝐺‘𝑁)) | ||
| Theorem | hashgf1o 13943 | 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ 𝐺:ω–1-1-onto→ℕ0 | ||
| Theorem | fzfi 13944 | A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| ⊢ (𝑀...𝑁) ∈ Fin | ||
| Theorem | fzfid 13945 | Commonly used special case of fzfi 13944. (Contributed by Mario Carneiro, 25-May-2014.) |
| ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | ||
| Theorem | fzofi 13946 | Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝑀..^𝑁) ∈ Fin | ||
| Theorem | fsequb 13947* | The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) | ||
| Theorem | fsequb2 13948* | The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐹:(𝑀...𝑁)⟶ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥) | ||
| Theorem | fseqsupcl 13949 | The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) | ||
| Theorem | fseqsupubi 13950 | The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005.) |
| ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐹:(𝑀...𝑁)⟶ℝ) → (𝐹‘𝐾) ≤ sup(ran 𝐹, ℝ, < )) | ||
| Theorem | nn0ennn 13951 | The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
| ⊢ ℕ0 ≈ ℕ | ||
| Theorem | nnenom 13952 | The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ℕ ≈ ω | ||
| Theorem | nnct 13953 | ℕ is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ ℕ ≼ ω | ||
| Theorem | uzindi 13954* | Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | axdc4uzlem 13955* | Lemma for axdc4uz 13956. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 ∈ V & ⊢ 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) & ⊢ 𝐻 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ((𝐺‘𝑛)𝐹𝑥)) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
| Theorem | axdc4uz 13956* | A version of axdc4 10416 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) | ||
| Theorem | ssnn0fi 13957* | A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.) |
| ⊢ (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | ||
| Theorem | rabssnn0fi 13958* | A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.) |
| ⊢ ({𝑥 ∈ ℕ0 ∣ 𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)) | ||
| Theorem | uzsinds 13959* | Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜒) | ||
| Theorem | nnsinds 13960* | Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝜒) | ||
| Theorem | nn0sinds 13961* | Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑁 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓 → 𝜑)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝜒) | ||
| Theorem | fsuppmapnn0fiublem 13962* | Lemma for fsuppmapnn0fiub 13963 and fsuppmapnn0fiubex 13964. (Contributed by AV, 2-Oct-2019.) |
| ⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → 𝑆 ∈ ℕ0)) | ||
| Theorem | fsuppmapnn0fiub 13963* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.) |
| ⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) & ⊢ 𝑆 = sup(𝑈, ℝ, < ) ⇒ ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))) | ||
| Theorem | fsuppmapnn0fiubex 13964* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.) |
| ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))) | ||
| Theorem | fsuppmapnn0fiub0 13965* | If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.) |
| ⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓‘𝑥) = 𝑍))) | ||
| Theorem | suppssfz 13966* | Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.) |
| ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆)) | ||
| Theorem | fsuppmapnn0ub 13967* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.) |
| ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) | ||
| Theorem | fsuppmapnn0fz 13968* | If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.) |
| ⊢ ((𝐹 ∈ (𝑅 ↑m ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) | ||
| Theorem | mptnn0fsupp 13969* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
| Theorem | mptnn0fsuppd 13970* | A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝑘 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝐷 = 0 )) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) | ||
| Theorem | mptnn0fsuppr 13971* | A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | ||
| Theorem | f13idfv 13972 | A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| ⊢ 𝐴 = (0...2) ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2)))) | ||
| Syntax | cseq 13973 | Extend class notation with recursive sequence builder. |
| class seq𝑀( + , 𝐹) | ||
| Definition | df-seq 13974* |
Define a general-purpose operation that builds a recursive sequence
(i.e., a function on an upper integer set such as ℕ or ℕ0)
whose value at an index is a function of its previous value and the
value of an input sequence at that index. This definition is
complicated, but fortunately it is not intended to be used directly.
Instead, the only purpose of this definition is to provide us with an
object that has the properties expressed by seq1 13986
and seqp1 13988.
Typically, those are the main theorems that would be used in practice.
The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 15525), by climdm 15527 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example. Internally, the rec function generates as its values a set of ordered pairs starting at 〈𝑀, (𝐹‘𝑀)〉, with the first member of each pair incremented by one in each successive value. So, the range of rec is exactly the sequence we want, and we just extract the range (restricted to omega) and throw away the domain. This definition has its roots in a series of theorems from om2uz0i 13919 through om2uzf1oi 13925, originally proved by Raph Levien for use with df-exp 14034 and later generalized for arbitrary recursive sequences. Definition df-sum 15660 extracts the summation values from partial (finite) and complete (infinite) series. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 4-Sep-2013.) |
| ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | ||
| Theorem | seqex 13975 | Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ seq𝑀( + , 𝐹) ∈ V | ||
| Theorem | seqeq1 13976 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) | ||
| Theorem | seqeq2 13977 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
| Theorem | seqeq3 13978 | Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
| Theorem | seqeq1d 13979 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | ||
| Theorem | seqeq2d 13980 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹)) | ||
| Theorem | seqeq3d 13981 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵)) | ||
| Theorem | seqeq123d 13982 | Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| ⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → + = 𝑄) & ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺)) | ||
| Theorem | nfseq 13983 | Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑀 & ⊢ Ⅎ𝑥 + & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) | ||
| Theorem | seqval 13984* | Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) ⇒ ⊢ seq𝑀( + , 𝐹) = ran 𝑅 | ||
| Theorem | seqfn 13985 | The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | ||
| Theorem | seq1 13986 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | ||
| Theorem | seq1i 13987 | Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ (𝜑 → (𝐹‘𝑀) = 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝐴) | ||
| Theorem | seqp1 13988 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | ||
| Theorem | seqexw 13989 | Weak version of seqex 13975 that holds without ax-rep 5237. A sequence builder exists when its binary operation input exists and its starting index is an integer. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ + ∈ V & ⊢ 𝑀 ∈ ℤ ⇒ ⊢ seq𝑀( + , 𝐹) ∈ V | ||
| Theorem | seqp1d 13990 | Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by AV, 3-May-2024.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ 𝐾 = (𝑁 + 1) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → (𝐹‘𝐾) = 𝐵) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵)) | ||
| Theorem | seqm1 13991 | Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) | ||
| Theorem | seqcl2 13992* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶) | ||
| Theorem | seqf2 13993* | Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) | ||
| Theorem | seqcl 13994* | Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) | ||
| Theorem | seqf 13995* | Range of the recursive sequence builder (special case of seqf2 13993). (Contributed by Mario Carneiro, 24-Jun-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) | ||
| Theorem | seqfveq2 13996* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) | ||
| Theorem | seqfeq2 13997* | Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) | ||
| Theorem | seqfveq 13998* | Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) | ||
| Theorem | seqfeq 13999* | Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) | ||
| Theorem | seqshft2 14000* | Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |