MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim3 Structured version   Visualization version   GIF version

Theorem geolim3 26382
Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
geolim3.a (𝜑𝐴 ∈ ℤ)
geolim3.b1 (𝜑𝐵 ∈ ℂ)
geolim3.b2 (𝜑 → (abs‘𝐵) < 1)
geolim3.c (𝜑𝐶 ∈ ℂ)
geolim3.f 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
Assertion
Ref Expression
geolim3 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geolim3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 geolim3.f . . 3 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
2 seqeq3 14048 . . 3 (𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) → seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))))
31, 2ax-mp 5 . 2 seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))))
4 nn0uz 12921 . . . . 5 0 = (ℤ‘0)
5 0zd 12627 . . . . 5 (𝜑 → 0 ∈ ℤ)
6 geolim3.c . . . . 5 (𝜑𝐶 ∈ ℂ)
7 geolim3.b1 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 geolim3.b2 . . . . . 6 (𝜑 → (abs‘𝐵) < 1)
9 oveq2 7440 . . . . . . . 8 (𝑘 = 𝑎 → (𝐵𝑘) = (𝐵𝑎))
10 eqid 2736 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ (𝐵𝑘)) = (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))
11 ovex 7465 . . . . . . . 8 (𝐵𝑎) ∈ V
129, 10, 11fvmpt 7015 . . . . . . 7 (𝑎 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
1312adantl 481 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
147, 8, 13geolim 15907 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))) ⇝ (1 / (1 − 𝐵)))
15 expcl 14121 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
167, 15sylan 580 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
1713, 16eqeltrd 2840 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) ∈ ℂ)
18 geolim3.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
1918zcnd 12725 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
20 nn0cn 12538 . . . . . . 7 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
21 fvex 6918 . . . . . . . . 9 (ℤ𝐴) ∈ V
2221mptex 7244 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) ∈ V
2322shftval4 15117 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
2419, 20, 23syl2an 596 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
25 uzid 12894 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
2618, 25syl 17 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ𝐴))
27 uzaddcl 12947 . . . . . . . 8 ((𝐴 ∈ (ℤ𝐴) ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
2826, 27sylan 580 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
29 oveq1 7439 . . . . . . . . . 10 (𝑘 = (𝐴 + 𝑎) → (𝑘𝐴) = ((𝐴 + 𝑎) − 𝐴))
3029oveq2d 7448 . . . . . . . . 9 (𝑘 = (𝐴 + 𝑎) → (𝐵↑(𝑘𝐴)) = (𝐵↑((𝐴 + 𝑎) − 𝐴)))
3130oveq2d 7448 . . . . . . . 8 (𝑘 = (𝐴 + 𝑎) → (𝐶 · (𝐵↑(𝑘𝐴))) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
32 eqid 2736 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
33 ovex 7465 . . . . . . . 8 (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) ∈ V
3431, 32, 33fvmpt 7015 . . . . . . 7 ((𝐴 + 𝑎) ∈ (ℤ𝐴) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
3528, 34syl 17 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
36 pncan2 11516 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3719, 20, 36syl2an 596 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ0) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3837oveq2d 7448 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = (𝐵𝑎))
3938, 13eqtr4d 2779 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎))
4039oveq2d 7448 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
4124, 35, 403eqtrd 2780 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
424, 5, 6, 14, 17, 41isermulc2 15695 . . . 4 (𝜑 → seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 · (1 / (1 − 𝐵))))
4319negidd 11611 . . . . 5 (𝜑 → (𝐴 + -𝐴) = 0)
4443seqeq1d 14049 . . . 4 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) = seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)))
45 ax-1cn 11214 . . . . . 6 1 ∈ ℂ
46 subcl 11508 . . . . . 6 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 − 𝐵) ∈ ℂ)
4745, 7, 46sylancr 587 . . . . 5 (𝜑 → (1 − 𝐵) ∈ ℂ)
48 abs1 15337 . . . . . . . . 9 (abs‘1) = 1
4948a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) = 1)
507abscld 15476 . . . . . . . . 9 (𝜑 → (abs‘𝐵) ∈ ℝ)
5150, 8gtned 11397 . . . . . . . 8 (𝜑 → 1 ≠ (abs‘𝐵))
5249, 51eqnetrd 3007 . . . . . . 7 (𝜑 → (abs‘1) ≠ (abs‘𝐵))
53 fveq2 6905 . . . . . . . 8 (1 = 𝐵 → (abs‘1) = (abs‘𝐵))
5453necon3i 2972 . . . . . . 7 ((abs‘1) ≠ (abs‘𝐵) → 1 ≠ 𝐵)
5552, 54syl 17 . . . . . 6 (𝜑 → 1 ≠ 𝐵)
56 subeq0 11536 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5745, 7, 56sylancr 587 . . . . . . 7 (𝜑 → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5857necon3bid 2984 . . . . . 6 (𝜑 → ((1 − 𝐵) ≠ 0 ↔ 1 ≠ 𝐵))
5955, 58mpbird 257 . . . . 5 (𝜑 → (1 − 𝐵) ≠ 0)
606, 47, 59divrecd 12047 . . . 4 (𝜑 → (𝐶 / (1 − 𝐵)) = (𝐶 · (1 / (1 − 𝐵))))
6142, 44, 603brtr4d 5174 . . 3 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))
6218znegcld 12726 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
6322isershft 15701 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6418, 62, 63syl2anc 584 . . 3 (𝜑 → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6561, 64mpbird 257 . 2 (𝜑 → seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)))
663, 65eqbrtrid 5177 1 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cmin 11493  -cneg 11494   / cdiv 11921  0cn0 12528  cz 12615  cuz 12879  seqcseq 14043  cexp 14103   shift cshi 15106  abscabs 15274  cli 15521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724
This theorem is referenced by:  aaliou3lem3  26387
  Copyright terms: Public domain W3C validator