Step | Hyp | Ref
| Expression |
1 | | geolim3.f |
. . 3
⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) |
2 | | seqeq3 13724 |
. . 3
⊢ (𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) → seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))))) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢ seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) |
4 | | nn0uz 12619 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
5 | | 0zd 12331 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
6 | | geolim3.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | | geolim3.b1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | | geolim3.b2 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐵) < 1) |
9 | | oveq2 7279 |
. . . . . . . 8
⊢ (𝑘 = 𝑎 → (𝐵↑𝑘) = (𝐵↑𝑎)) |
10 | | eqid 2740 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ (𝐵↑𝑘)) = (𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘)) |
11 | | ovex 7304 |
. . . . . . . 8
⊢ (𝐵↑𝑎) ∈ V |
12 | 9, 10, 11 | fvmpt 6872 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (𝐵↑𝑘))‘𝑎) = (𝐵↑𝑎)) |
13 | 12 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝐵↑𝑘))‘𝑎) = (𝐵↑𝑎)) |
14 | 7, 8, 13 | geolim 15580 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ (𝐵↑𝑘))) ⇝ (1 / (1 −
𝐵))) |
15 | | expcl 13798 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0)
→ (𝐵↑𝑎) ∈
ℂ) |
16 | 7, 15 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐵↑𝑎) ∈ ℂ) |
17 | 13, 16 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝐵↑𝑘))‘𝑎) ∈ ℂ) |
18 | | geolim3.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
19 | 18 | zcnd 12426 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | | nn0cn 12243 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
ℂ) |
21 | | fvex 6784 |
. . . . . . . . 9
⊢
(ℤ≥‘𝐴) ∈ V |
22 | 21 | mptex 7096 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ∈ V |
23 | 22 | shftval4 14786 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎))) |
24 | 19, 20, 23 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎))) |
25 | | uzid 12596 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
(ℤ≥‘𝐴)) |
26 | 18, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘𝐴)) |
27 | | uzaddcl 12643 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘𝐴) ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ≥‘𝐴)) |
28 | 26, 27 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ≥‘𝐴)) |
29 | | oveq1 7278 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐴 + 𝑎) → (𝑘 − 𝐴) = ((𝐴 + 𝑎) − 𝐴)) |
30 | 29 | oveq2d 7287 |
. . . . . . . . 9
⊢ (𝑘 = (𝐴 + 𝑎) → (𝐵↑(𝑘 − 𝐴)) = (𝐵↑((𝐴 + 𝑎) − 𝐴))) |
31 | 30 | oveq2d 7287 |
. . . . . . . 8
⊢ (𝑘 = (𝐴 + 𝑎) → (𝐶 · (𝐵↑(𝑘 − 𝐴))) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴)))) |
32 | | eqid 2740 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) |
33 | | ovex 7304 |
. . . . . . . 8
⊢ (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) ∈ V |
34 | 31, 32, 33 | fvmpt 6872 |
. . . . . . 7
⊢ ((𝐴 + 𝑎) ∈ (ℤ≥‘𝐴) → ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴)))) |
35 | 28, 34 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴)))) |
36 | | pncan2 11228 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝐴 + 𝑎) − 𝐴) = 𝑎) |
37 | 19, 20, 36 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝐴 + 𝑎) − 𝐴) = 𝑎) |
38 | 37 | oveq2d 7287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = (𝐵↑𝑎)) |
39 | 38, 13 | eqtr4d 2783 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = ((𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘))‘𝑎)) |
40 | 39 | oveq2d 7287 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘))‘𝑎))) |
41 | 24, 35, 40 | 3eqtrd 2784 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)‘𝑎) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘))‘𝑎))) |
42 | 4, 5, 6, 14, 17, 41 | isermulc2 15367 |
. . . 4
⊢ (𝜑 → seq0( + , ((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 · (1 / (1 − 𝐵)))) |
43 | 19 | negidd 11322 |
. . . . 5
⊢ (𝜑 → (𝐴 + -𝐴) = 0) |
44 | 43 | seqeq1d 13725 |
. . . 4
⊢ (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) = seq0( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴))) |
45 | | ax-1cn 10930 |
. . . . . 6
⊢ 1 ∈
ℂ |
46 | | subcl 11220 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝐵
∈ ℂ) → (1 − 𝐵) ∈ ℂ) |
47 | 45, 7, 46 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (1 − 𝐵) ∈
ℂ) |
48 | | abs1 15007 |
. . . . . . . . 9
⊢
(abs‘1) = 1 |
49 | 48 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (abs‘1) =
1) |
50 | 7 | abscld 15146 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐵) ∈
ℝ) |
51 | 50, 8 | gtned 11110 |
. . . . . . . 8
⊢ (𝜑 → 1 ≠ (abs‘𝐵)) |
52 | 49, 51 | eqnetrd 3013 |
. . . . . . 7
⊢ (𝜑 → (abs‘1) ≠
(abs‘𝐵)) |
53 | | fveq2 6771 |
. . . . . . . 8
⊢ (1 =
𝐵 → (abs‘1) =
(abs‘𝐵)) |
54 | 53 | necon3i 2978 |
. . . . . . 7
⊢
((abs‘1) ≠ (abs‘𝐵) → 1 ≠ 𝐵) |
55 | 52, 54 | syl 17 |
. . . . . 6
⊢ (𝜑 → 1 ≠ 𝐵) |
56 | | subeq0 11247 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝐵
∈ ℂ) → ((1 − 𝐵) = 0 ↔ 1 = 𝐵)) |
57 | 45, 7, 56 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → ((1 − 𝐵) = 0 ↔ 1 = 𝐵)) |
58 | 57 | necon3bid 2990 |
. . . . . 6
⊢ (𝜑 → ((1 − 𝐵) ≠ 0 ↔ 1 ≠ 𝐵)) |
59 | 55, 58 | mpbird 256 |
. . . . 5
⊢ (𝜑 → (1 − 𝐵) ≠ 0) |
60 | 6, 47, 59 | divrecd 11754 |
. . . 4
⊢ (𝜑 → (𝐶 / (1 − 𝐵)) = (𝐶 · (1 / (1 − 𝐵)))) |
61 | 42, 44, 60 | 3brtr4d 5111 |
. . 3
⊢ (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))) |
62 | 18 | znegcld 12427 |
. . . 4
⊢ (𝜑 → -𝐴 ∈ ℤ) |
63 | 22 | isershft 15373 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) →
(seq𝐴( + , (𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))) |
64 | 18, 62, 63 | syl2anc 584 |
. . 3
⊢ (𝜑 → (seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))) |
65 | 61, 64 | mpbird 256 |
. 2
⊢ (𝜑 → seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) ⇝ (𝐶 / (1 − 𝐵))) |
66 | 3, 65 | eqbrtrid 5114 |
1
⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) |