MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim3 Structured version   Visualization version   GIF version

Theorem geolim3 26263
Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
geolim3.a (𝜑𝐴 ∈ ℤ)
geolim3.b1 (𝜑𝐵 ∈ ℂ)
geolim3.b2 (𝜑 → (abs‘𝐵) < 1)
geolim3.c (𝜑𝐶 ∈ ℂ)
geolim3.f 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
Assertion
Ref Expression
geolim3 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geolim3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 geolim3.f . . 3 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
2 seqeq3 13931 . . 3 (𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) → seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))))
31, 2ax-mp 5 . 2 seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))))
4 nn0uz 12795 . . . . 5 0 = (ℤ‘0)
5 0zd 12501 . . . . 5 (𝜑 → 0 ∈ ℤ)
6 geolim3.c . . . . 5 (𝜑𝐶 ∈ ℂ)
7 geolim3.b1 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 geolim3.b2 . . . . . 6 (𝜑 → (abs‘𝐵) < 1)
9 oveq2 7361 . . . . . . . 8 (𝑘 = 𝑎 → (𝐵𝑘) = (𝐵𝑎))
10 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ (𝐵𝑘)) = (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))
11 ovex 7386 . . . . . . . 8 (𝐵𝑎) ∈ V
129, 10, 11fvmpt 6934 . . . . . . 7 (𝑎 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
1312adantl 481 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
147, 8, 13geolim 15795 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))) ⇝ (1 / (1 − 𝐵)))
15 expcl 14004 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
167, 15sylan 580 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
1713, 16eqeltrd 2828 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) ∈ ℂ)
18 geolim3.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
1918zcnd 12599 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
20 nn0cn 12412 . . . . . . 7 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
21 fvex 6839 . . . . . . . . 9 (ℤ𝐴) ∈ V
2221mptex 7163 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) ∈ V
2322shftval4 15002 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
2419, 20, 23syl2an 596 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
25 uzid 12768 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
2618, 25syl 17 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ𝐴))
27 uzaddcl 12823 . . . . . . . 8 ((𝐴 ∈ (ℤ𝐴) ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
2826, 27sylan 580 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
29 oveq1 7360 . . . . . . . . . 10 (𝑘 = (𝐴 + 𝑎) → (𝑘𝐴) = ((𝐴 + 𝑎) − 𝐴))
3029oveq2d 7369 . . . . . . . . 9 (𝑘 = (𝐴 + 𝑎) → (𝐵↑(𝑘𝐴)) = (𝐵↑((𝐴 + 𝑎) − 𝐴)))
3130oveq2d 7369 . . . . . . . 8 (𝑘 = (𝐴 + 𝑎) → (𝐶 · (𝐵↑(𝑘𝐴))) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
32 eqid 2729 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
33 ovex 7386 . . . . . . . 8 (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) ∈ V
3431, 32, 33fvmpt 6934 . . . . . . 7 ((𝐴 + 𝑎) ∈ (ℤ𝐴) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
3528, 34syl 17 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
36 pncan2 11388 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3719, 20, 36syl2an 596 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ0) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3837oveq2d 7369 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = (𝐵𝑎))
3938, 13eqtr4d 2767 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎))
4039oveq2d 7369 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
4124, 35, 403eqtrd 2768 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
424, 5, 6, 14, 17, 41isermulc2 15583 . . . 4 (𝜑 → seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 · (1 / (1 − 𝐵))))
4319negidd 11483 . . . . 5 (𝜑 → (𝐴 + -𝐴) = 0)
4443seqeq1d 13932 . . . 4 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) = seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)))
45 ax-1cn 11086 . . . . . 6 1 ∈ ℂ
46 subcl 11380 . . . . . 6 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 − 𝐵) ∈ ℂ)
4745, 7, 46sylancr 587 . . . . 5 (𝜑 → (1 − 𝐵) ∈ ℂ)
48 abs1 15222 . . . . . . . . 9 (abs‘1) = 1
4948a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) = 1)
507abscld 15364 . . . . . . . . 9 (𝜑 → (abs‘𝐵) ∈ ℝ)
5150, 8gtned 11269 . . . . . . . 8 (𝜑 → 1 ≠ (abs‘𝐵))
5249, 51eqnetrd 2992 . . . . . . 7 (𝜑 → (abs‘1) ≠ (abs‘𝐵))
53 fveq2 6826 . . . . . . . 8 (1 = 𝐵 → (abs‘1) = (abs‘𝐵))
5453necon3i 2957 . . . . . . 7 ((abs‘1) ≠ (abs‘𝐵) → 1 ≠ 𝐵)
5552, 54syl 17 . . . . . 6 (𝜑 → 1 ≠ 𝐵)
56 subeq0 11408 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5745, 7, 56sylancr 587 . . . . . . 7 (𝜑 → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5857necon3bid 2969 . . . . . 6 (𝜑 → ((1 − 𝐵) ≠ 0 ↔ 1 ≠ 𝐵))
5955, 58mpbird 257 . . . . 5 (𝜑 → (1 − 𝐵) ≠ 0)
606, 47, 59divrecd 11921 . . . 4 (𝜑 → (𝐶 / (1 − 𝐵)) = (𝐶 · (1 / (1 − 𝐵))))
6142, 44, 603brtr4d 5127 . . 3 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))
6218znegcld 12600 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
6322isershft 15589 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6418, 62, 63syl2anc 584 . . 3 (𝜑 → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6561, 64mpbird 257 . 2 (𝜑 → seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)))
663, 65eqbrtrid 5130 1 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365  -cneg 11366   / cdiv 11795  0cn0 12402  cz 12489  cuz 12753  seqcseq 13926  cexp 13986   shift cshi 14991  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612
This theorem is referenced by:  aaliou3lem3  26268
  Copyright terms: Public domain W3C validator