| Step | Hyp | Ref
| Expression |
| 1 | | geolim3.f |
. . 3
⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) |
| 2 | | seqeq3 14029 |
. . 3
⊢ (𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) → seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))))) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢ seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) |
| 4 | | nn0uz 12899 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
| 5 | | 0zd 12605 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
| 6 | | geolim3.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | | geolim3.b1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 8 | | geolim3.b2 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐵) < 1) |
| 9 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑘 = 𝑎 → (𝐵↑𝑘) = (𝐵↑𝑎)) |
| 10 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ (𝐵↑𝑘)) = (𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘)) |
| 11 | | ovex 7443 |
. . . . . . . 8
⊢ (𝐵↑𝑎) ∈ V |
| 12 | 9, 10, 11 | fvmpt 6991 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (𝐵↑𝑘))‘𝑎) = (𝐵↑𝑎)) |
| 13 | 12 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝐵↑𝑘))‘𝑎) = (𝐵↑𝑎)) |
| 14 | 7, 8, 13 | geolim 15891 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ (𝐵↑𝑘))) ⇝ (1 / (1 −
𝐵))) |
| 15 | | expcl 14102 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0)
→ (𝐵↑𝑎) ∈
ℂ) |
| 16 | 7, 15 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐵↑𝑎) ∈ ℂ) |
| 17 | 13, 16 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (𝐵↑𝑘))‘𝑎) ∈ ℂ) |
| 18 | | geolim3.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 19 | 18 | zcnd 12703 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 20 | | nn0cn 12516 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
ℂ) |
| 21 | | fvex 6894 |
. . . . . . . . 9
⊢
(ℤ≥‘𝐴) ∈ V |
| 22 | 21 | mptex 7220 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ∈ V |
| 23 | 22 | shftval4 15101 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎))) |
| 24 | 19, 20, 23 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎))) |
| 25 | | uzid 12872 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
(ℤ≥‘𝐴)) |
| 26 | 18, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘𝐴)) |
| 27 | | uzaddcl 12925 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘𝐴) ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ≥‘𝐴)) |
| 28 | 26, 27 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ≥‘𝐴)) |
| 29 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐴 + 𝑎) → (𝑘 − 𝐴) = ((𝐴 + 𝑎) − 𝐴)) |
| 30 | 29 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑘 = (𝐴 + 𝑎) → (𝐵↑(𝑘 − 𝐴)) = (𝐵↑((𝐴 + 𝑎) − 𝐴))) |
| 31 | 30 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑘 = (𝐴 + 𝑎) → (𝐶 · (𝐵↑(𝑘 − 𝐴))) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴)))) |
| 32 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) |
| 33 | | ovex 7443 |
. . . . . . . 8
⊢ (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) ∈ V |
| 34 | 31, 32, 33 | fvmpt 6991 |
. . . . . . 7
⊢ ((𝐴 + 𝑎) ∈ (ℤ≥‘𝐴) → ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴)))) |
| 35 | 28, 34 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴)))) |
| 36 | | pncan2 11494 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝐴 + 𝑎) − 𝐴) = 𝑎) |
| 37 | 19, 20, 36 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → ((𝐴 + 𝑎) − 𝐴) = 𝑎) |
| 38 | 37 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = (𝐵↑𝑎)) |
| 39 | 38, 13 | eqtr4d 2774 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = ((𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘))‘𝑎)) |
| 40 | 39 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘))‘𝑎))) |
| 41 | 24, 35, 40 | 3eqtrd 2775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ0) → (((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)‘𝑎) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵↑𝑘))‘𝑎))) |
| 42 | 4, 5, 6, 14, 17, 41 | isermulc2 15679 |
. . . 4
⊢ (𝜑 → seq0( + , ((𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 · (1 / (1 − 𝐵)))) |
| 43 | 19 | negidd 11589 |
. . . . 5
⊢ (𝜑 → (𝐴 + -𝐴) = 0) |
| 44 | 43 | seqeq1d 14030 |
. . . 4
⊢ (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) = seq0( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴))) |
| 45 | | ax-1cn 11192 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 46 | | subcl 11486 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝐵
∈ ℂ) → (1 − 𝐵) ∈ ℂ) |
| 47 | 45, 7, 46 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (1 − 𝐵) ∈
ℂ) |
| 48 | | abs1 15321 |
. . . . . . . . 9
⊢
(abs‘1) = 1 |
| 49 | 48 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (abs‘1) =
1) |
| 50 | 7 | abscld 15460 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐵) ∈
ℝ) |
| 51 | 50, 8 | gtned 11375 |
. . . . . . . 8
⊢ (𝜑 → 1 ≠ (abs‘𝐵)) |
| 52 | 49, 51 | eqnetrd 3000 |
. . . . . . 7
⊢ (𝜑 → (abs‘1) ≠
(abs‘𝐵)) |
| 53 | | fveq2 6881 |
. . . . . . . 8
⊢ (1 =
𝐵 → (abs‘1) =
(abs‘𝐵)) |
| 54 | 53 | necon3i 2965 |
. . . . . . 7
⊢
((abs‘1) ≠ (abs‘𝐵) → 1 ≠ 𝐵) |
| 55 | 52, 54 | syl 17 |
. . . . . 6
⊢ (𝜑 → 1 ≠ 𝐵) |
| 56 | | subeq0 11514 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝐵
∈ ℂ) → ((1 − 𝐵) = 0 ↔ 1 = 𝐵)) |
| 57 | 45, 7, 56 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → ((1 − 𝐵) = 0 ↔ 1 = 𝐵)) |
| 58 | 57 | necon3bid 2977 |
. . . . . 6
⊢ (𝜑 → ((1 − 𝐵) ≠ 0 ↔ 1 ≠ 𝐵)) |
| 59 | 55, 58 | mpbird 257 |
. . . . 5
⊢ (𝜑 → (1 − 𝐵) ≠ 0) |
| 60 | 6, 47, 59 | divrecd 12025 |
. . . 4
⊢ (𝜑 → (𝐶 / (1 − 𝐵)) = (𝐶 · (1 / (1 − 𝐵)))) |
| 61 | 42, 44, 60 | 3brtr4d 5156 |
. . 3
⊢ (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))) |
| 62 | 18 | znegcld 12704 |
. . . 4
⊢ (𝜑 → -𝐴 ∈ ℤ) |
| 63 | 22 | isershft 15685 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) →
(seq𝐴( + , (𝑘 ∈
(ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))) |
| 64 | 18, 62, 63 | syl2anc 584 |
. . 3
⊢ (𝜑 → (seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))) |
| 65 | 61, 64 | mpbird 257 |
. 2
⊢ (𝜑 → seq𝐴( + , (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴))))) ⇝ (𝐶 / (1 − 𝐵))) |
| 66 | 3, 65 | eqbrtrid 5159 |
1
⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) |