Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem7 Structured version   Visualization version   GIF version

Theorem stirlinglem7 41861
Description: Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem7.1 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
stirlinglem7.2 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
stirlinglem7.3 𝐻 = (𝑘 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)))))
Assertion
Ref Expression
stirlinglem7 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ (𝐽𝑁))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐻   𝑛,𝐾   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐻(𝑘)   𝐽(𝑘,𝑛)   𝐾(𝑘)

Proof of Theorem stirlinglem7
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12119 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11851 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 1e0p1 11978 . . . . . . . 8 1 = (0 + 1)
43a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 = (0 + 1))
54seqeq1d 13213 . . . . . 6 (𝑁 ∈ ℕ → seq1( + , 𝐻) = seq(0 + 1)( + , 𝐻))
6 nn0uz 12118 . . . . . . 7 0 = (ℤ‘0)
7 0nn0 11749 . . . . . . . 8 0 ∈ ℕ0
87a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
9 stirlinglem7.3 . . . . . . . . 9 𝐻 = (𝑘 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)))))
10 oveq2 7015 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
1110oveq1d 7022 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
1211oveq2d 7023 . . . . . . . . . . 11 (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1)))
1311oveq2d 7023 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))
1412, 13oveq12d 7025 . . . . . . . . . 10 (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1))))
1514oveq2d 7023 . . . . . . . . 9 (𝑘 = 𝑗 → (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)))) = (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
16 simpr 485 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
17 2cnd 11552 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 2 ∈ ℂ)
18 2cnd 11552 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → 2 ∈ ℂ)
19 nn0cn 11744 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
2018, 19mulcld 10496 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → (2 · 𝑗) ∈ ℂ)
21 1cnd 10471 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → 1 ∈ ℂ)
2220, 21addcld 10495 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℂ)
2322adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ∈ ℂ)
24 0red 10479 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → 0 ∈ ℝ)
25 2re 11548 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ0 → 2 ∈ ℝ)
27 nn0re 11743 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
2826, 27remulcld 10506 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0 → (2 · 𝑗) ∈ ℝ)
29 1red 10477 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0 → 1 ∈ ℝ)
30 0le2 11576 . . . . . . . . . . . . . . . . . 18 0 ≤ 2
3130a1i 11 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ0 → 0 ≤ 2)
32 nn0ge0 11759 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ0 → 0 ≤ 𝑗)
3326, 27, 31, 32mulge0d 11054 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0 → 0 ≤ (2 · 𝑗))
34 0lt1 10999 . . . . . . . . . . . . . . . . 17 0 < 1
3534a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0 → 0 < 1)
3628, 29, 33, 35addgegt0d 11050 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → 0 < ((2 · 𝑗) + 1))
3724, 36ltned 10612 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → 0 ≠ ((2 · 𝑗) + 1))
3837adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 0 ≠ ((2 · 𝑗) + 1))
3938necomd 3037 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 0)
4023, 39reccld 11246 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
41 nncn 11483 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4241adantr 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 𝑁 ∈ ℂ)
4317, 42mulcld 10496 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2 · 𝑁) ∈ ℂ)
44 1cnd 10471 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 1 ∈ ℂ)
4543, 44addcld 10495 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑁) + 1) ∈ ℂ)
4625a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 2 ∈ ℝ)
47 nnre 11482 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
4846, 47remulcld 10506 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
49 1red 10477 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℝ)
5030a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ 2)
51 0red 10479 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 0 ∈ ℝ)
52 nngt0 11505 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 0 < 𝑁)
5351, 47, 52ltled 10624 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
5446, 47, 50, 53mulge0d 11054 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
5534a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 0 < 1)
5648, 49, 54, 55addgegt0d 11050 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
5756gt0ne0d 11041 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
5857adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑁) + 1) ≠ 0)
5945, 58reccld 11246 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
60 2nn0 11751 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
6160a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 2 ∈ ℕ0)
6261, 16nn0mulcld 11797 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2 · 𝑗) ∈ ℕ0)
63 1nn0 11750 . . . . . . . . . . . . . 14 1 ∈ ℕ0
6463a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → 1 ∈ ℕ0)
6562, 64nn0addcld 11796 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ∈ ℕ0)
6659, 65expcld 13348 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)) ∈ ℂ)
6740, 66mulcld 10496 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1))) ∈ ℂ)
6817, 67mulcld 10496 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))) ∈ ℂ)
699, 15, 16, 68fvmptd3 6648 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝐻𝑗) = (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1)))))
7069, 68eqeltrd 2881 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝐻𝑗) ∈ ℂ)
719stirlinglem6 41860 . . . . . . 7 (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁)))
726, 8, 70, 71clim2ser 14833 . . . . . 6 (𝑁 ∈ ℕ → seq(0 + 1)( + , 𝐻) ⇝ ((log‘((𝑁 + 1) / 𝑁)) − (seq0( + , 𝐻)‘0)))
735, 72eqbrtrd 4978 . . . . 5 (𝑁 ∈ ℕ → seq1( + , 𝐻) ⇝ ((log‘((𝑁 + 1) / 𝑁)) − (seq0( + , 𝐻)‘0)))
74 0z 11829 . . . . . . . 8 0 ∈ ℤ
75 seq1 13220 . . . . . . . 8 (0 ∈ ℤ → (seq0( + , 𝐻)‘0) = (𝐻‘0))
7674, 75mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (seq0( + , 𝐻)‘0) = (𝐻‘0))
779a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 𝐻 = (𝑘 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))))))
78 simpr 485 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → 𝑘 = 0)
7978oveq2d 7023 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → (2 · 𝑘) = (2 · 0))
8079oveq1d 7022 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → ((2 · 𝑘) + 1) = ((2 · 0) + 1))
8180oveq2d 7023 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 0) + 1)))
8280oveq2d 7023 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)))
8381, 82oveq12d 7025 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))) = ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1))))
8483oveq2d 7023 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = 0) → (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)))) = (2 · ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)))))
85 2cnd 11552 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℂ)
86 0cnd 10469 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 ∈ ℂ)
8785, 86mulcld 10496 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · 0) ∈ ℂ)
88 1cnd 10471 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 ∈ ℂ)
8987, 88addcld 10495 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 0) + 1) ∈ ℂ)
9085mul01d 10675 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (2 · 0) = 0)
9190eqcomd 2799 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 = (2 · 0))
9291oveq1d 7022 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (0 + 1) = ((2 · 0) + 1))
934, 92eqtrd 2829 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 = ((2 · 0) + 1))
9455, 93breqtrd 4982 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < ((2 · 0) + 1))
9594gt0ne0d 11041 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 0) + 1) ≠ 0)
9689, 95reccld 11246 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / ((2 · 0) + 1)) ∈ ℂ)
9785, 41mulcld 10496 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
9897, 88addcld 10495 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
9998, 57reccld 11246 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
10093, 63syl6eqelr 2890 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 0) + 1) ∈ ℕ0)
10199, 100expcld 13348 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)) ∈ ℂ)
10296, 101mulcld 10496 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1))) ∈ ℂ)
10385, 102mulcld 10496 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)))) ∈ ℂ)
10477, 84, 8, 103fvmptd 6632 . . . . . . 7 (𝑁 ∈ ℕ → (𝐻‘0) = (2 · ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)))))
10590oveq1d 7022 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((2 · 0) + 1) = (0 + 1))
106105, 3syl6eqr 2847 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 0) + 1) = 1)
107106oveq2d 7023 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 / ((2 · 0) + 1)) = (1 / 1))
10888div1d 11245 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 / 1) = 1)
109107, 108eqtrd 2829 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / ((2 · 0) + 1)) = 1)
110106oveq2d 7023 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)) = ((1 / ((2 · 𝑁) + 1))↑1))
11199exp1d 13343 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑1) = (1 / ((2 · 𝑁) + 1)))
112110, 111eqtrd 2829 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)) = (1 / ((2 · 𝑁) + 1)))
113109, 112oveq12d 7025 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1))) = (1 · (1 / ((2 · 𝑁) + 1))))
11499mulid2d 10494 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 · (1 / ((2 · 𝑁) + 1))) = (1 / ((2 · 𝑁) + 1)))
115113, 114eqtrd 2829 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1))) = (1 / ((2 · 𝑁) + 1)))
116115oveq2d 7023 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)))) = (2 · (1 / ((2 · 𝑁) + 1))))
11785, 88, 98, 57divassd 11288 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 1) / ((2 · 𝑁) + 1)) = (2 · (1 / ((2 · 𝑁) + 1))))
11885mulid1d 10493 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 1) = 2)
119118oveq1d 7022 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 1) / ((2 · 𝑁) + 1)) = (2 / ((2 · 𝑁) + 1)))
120116, 117, 1193eqtr2d 2835 . . . . . . 7 (𝑁 ∈ ℕ → (2 · ((1 / ((2 · 0) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 0) + 1)))) = (2 / ((2 · 𝑁) + 1)))
12176, 104, 1203eqtrd 2833 . . . . . 6 (𝑁 ∈ ℕ → (seq0( + , 𝐻)‘0) = (2 / ((2 · 𝑁) + 1)))
122121oveq2d 7023 . . . . 5 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) / 𝑁)) − (seq0( + , 𝐻)‘0)) = ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1))))
12373, 122breqtrd 4982 . . . 4 (𝑁 ∈ ℕ → seq1( + , 𝐻) ⇝ ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1))))
12488, 97addcld 10495 . . . . 5 (𝑁 ∈ ℕ → (1 + (2 · 𝑁)) ∈ ℂ)
125124halfcld 11719 . . . 4 (𝑁 ∈ ℕ → ((1 + (2 · 𝑁)) / 2) ∈ ℂ)
126 seqex 13209 . . . . 5 seq1( + , 𝐾) ∈ V
127126a1i 11 . . . 4 (𝑁 ∈ ℕ → seq1( + , 𝐾) ∈ V)
128 elnnuz 12120 . . . . . . 7 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
129128biimpi 217 . . . . . 6 (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ‘1))
130129adantl 482 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
131 oveq2 7015 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
132131oveq1d 7022 . . . . . . . . . 10 (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1))
133132oveq2d 7023 . . . . . . . . 9 (𝑘 = 𝑛 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑛) + 1)))
134132oveq2d 7023 . . . . . . . . 9 (𝑘 = 𝑛 → ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))
135133, 134oveq12d 7025 . . . . . . . 8 (𝑘 = 𝑛 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))))
136135oveq2d 7023 . . . . . . 7 (𝑘 = 𝑛 → (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1)))) = (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))))
137 elfzuz 12743 . . . . . . . . 9 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ (ℤ‘1))
138 elnnuz 12120 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
139138biimpri 229 . . . . . . . . 9 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
140 nnnn0 11741 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
141137, 139, 1403syl 18 . . . . . . . 8 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ0)
142141adantl 482 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ0)
143 2cnd 11552 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℂ)
144142nn0cnd 11794 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℂ)
145143, 144mulcld 10496 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℂ)
146 1cnd 10471 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℂ)
147145, 146addcld 10495 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℂ)
148 elfznn 12775 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
149 0red 10479 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ∈ ℝ)
150 1red 10477 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 1 ∈ ℝ)
15125a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ)
152 nnre 11482 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
153151, 152remulcld 10506 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
154153, 150readdcld 10505 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
15534a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < 1)
156 2rp 12233 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
157156a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
158 nnrp 12239 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
159157, 158rpmulcld 12286 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
160150, 159ltaddrp2d 12304 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 1 < ((2 · 𝑛) + 1))
161149, 150, 154, 155, 160lttrd 10637 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
162161gt0ne0d 11041 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
163148, 162syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → ((2 · 𝑛) + 1) ≠ 0)
164163adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ≠ 0)
165147, 164reccld 11246 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
16699ad2antrr 722 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
16760a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℕ0)
168167, 142nn0mulcld 11797 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℕ0)
16963a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℕ0)
170168, 169nn0addcld 11796 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℕ0)
171166, 170expcld 13348 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)) ∈ ℂ)
172165, 171mulcld 10496 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))) ∈ ℂ)
173143, 172mulcld 10496 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) ∈ ℂ)
1749, 136, 142, 173fvmptd3 6648 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐻𝑛) = (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))))
175174, 173eqeltrd 2881 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐻𝑛) ∈ ℂ)
176 addcl 10454 . . . . . 6 ((𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (𝑛 + 𝑖) ∈ ℂ)
177176adantl 482 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (𝑛 + 𝑖) ∈ ℂ)
178130, 175, 177seqcl 13228 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐻)‘𝑗) ∈ ℂ)
179 1cnd 10471 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → 1 ∈ ℂ)
180 2cnd 11552 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → 2 ∈ ℂ)
18141ad2antrr 722 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → 𝑁 ∈ ℂ)
182180, 181mulcld 10496 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (2 · 𝑁) ∈ ℂ)
183179, 182addcld 10495 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (1 + (2 · 𝑁)) ∈ ℂ)
184183halfcld 11719 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → ((1 + (2 · 𝑁)) / 2) ∈ ℂ)
185 simprl 767 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → 𝑛 ∈ ℂ)
186 simprr 769 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → 𝑖 ∈ ℂ)
187184, 185, 186adddid 10500 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (((1 + (2 · 𝑁)) / 2) · (𝑛 + 𝑖)) = ((((1 + (2 · 𝑁)) / 2) · 𝑛) + (((1 + (2 · 𝑁)) / 2) · 𝑖)))
188 stirlinglem7.2 . . . . . . 7 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
189131oveq2d 7023 . . . . . . . 8 (𝑘 = 𝑛 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)))
190133, 189oveq12d 7025 . . . . . . 7 (𝑘 = 𝑛 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
191148adantl 482 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ)
192166, 168expcld 13348 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℂ)
193165, 192mulcld 10496 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℂ)
194188, 190, 191, 193fvmptd3 6648 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
195124ad2antrr 722 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 + (2 · 𝑁)) ∈ ℂ)
196 2ne0 11578 . . . . . . . . 9 2 ≠ 0
197196a1i 11 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 2 ≠ 0)
198195, 143, 173, 197div32d 11276 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((1 + (2 · 𝑁)) / 2) · (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))))) = ((1 + (2 · 𝑁)) · ((2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) / 2)))
199172, 143, 197divcan3d 11258 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) / 2) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))))
200199oveq2d 7023 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) · ((2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) / 2)) = ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))))
201195, 165, 171mul12d 10685 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) = ((1 / ((2 · 𝑛) + 1)) · ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))))
20298ad2antrr 722 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℂ)
20357ad2antrr 722 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ≠ 0)
204170nn0zd 11923 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℤ)
205202, 203, 204exprecd 13356 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)) = (1 / (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1))))
206205oveq2d 7023 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))) = ((1 + (2 · 𝑁)) · (1 / (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1)))))
207202, 170expcld 13348 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1)) ∈ ℂ)
208202, 203, 204expne0d 13354 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1)) ≠ 0)
209195, 207, 208divrecd 11256 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) / (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1))) = ((1 + (2 · 𝑁)) · (1 / (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1)))))
21041ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℂ)
211143, 210mulcld 10496 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℂ)
212146, 211addcomd 10678 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 + (2 · 𝑁)) = ((2 · 𝑁) + 1))
213202, 168expcld 13348 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑(2 · 𝑛)) ∈ ℂ)
214213, 202mulcomd 10497 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((((2 · 𝑁) + 1)↑(2 · 𝑛)) · ((2 · 𝑁) + 1)) = (((2 · 𝑁) + 1) · (((2 · 𝑁) + 1)↑(2 · 𝑛))))
215212, 214oveq12d 7025 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) / ((((2 · 𝑁) + 1)↑(2 · 𝑛)) · ((2 · 𝑁) + 1))) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) · (((2 · 𝑁) + 1)↑(2 · 𝑛)))))
216202, 168expp1d 13349 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1)) = ((((2 · 𝑁) + 1)↑(2 · 𝑛)) · ((2 · 𝑁) + 1)))
217216oveq2d 7023 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) / (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1))) = ((1 + (2 · 𝑁)) / ((((2 · 𝑁) + 1)↑(2 · 𝑛)) · ((2 · 𝑁) + 1))))
218 2z 11852 . . . . . . . . . . . . . . 15 2 ∈ ℤ
219218a1i 11 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℤ)
220142nn0zd 11923 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℤ)
221219, 220zmulcld 11931 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℤ)
222202, 203, 221expne0d 13354 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑(2 · 𝑛)) ≠ 0)
223202, 202, 213, 203, 222divdiv1d 11284 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) · (((2 · 𝑁) + 1)↑(2 · 𝑛)))))
224215, 217, 2233eqtr4d 2839 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) / (((2 · 𝑁) + 1)↑((2 · 𝑛) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
225206, 209, 2243eqtr2d 2835 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))) = ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
226225oveq2d 7023 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) = ((1 / ((2 · 𝑛) + 1)) · ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛)))))
227202, 203dividd 11251 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = 1)
228 1exp 13296 . . . . . . . . . . . . 13 ((2 · 𝑛) ∈ ℤ → (1↑(2 · 𝑛)) = 1)
229221, 228syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1↑(2 · 𝑛)) = 1)
230227, 229eqtr4d 2832 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) = (1↑(2 · 𝑛)))
231230oveq1d 7022 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))) = ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
232146, 202, 203, 168expdivd 13362 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
233231, 232eqtr4d 2832 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)))
234233oveq2d 7023 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((((2 · 𝑁) + 1) / ((2 · 𝑁) + 1)) / (((2 · 𝑁) + 1)↑(2 · 𝑛)))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
235201, 226, 2343eqtrd 2833 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 + (2 · 𝑁)) · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
236198, 200, 2353eqtrd 2833 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((1 + (2 · 𝑁)) / 2) · (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
237174eqcomd 2799 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1)))) = (𝐻𝑛))
238237oveq2d 7023 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((1 + (2 · 𝑁)) / 2) · (2 · ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑛) + 1))))) = (((1 + (2 · 𝑁)) / 2) · (𝐻𝑛)))
239194, 236, 2383eqtr2d 2835 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = (((1 + (2 · 𝑁)) / 2) · (𝐻𝑛)))
240177, 187, 130, 175, 239seqdistr 13259 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) = (((1 + (2 · 𝑁)) / 2) · (seq1( + , 𝐻)‘𝑗)))
2411, 2, 123, 125, 127, 178, 240climmulc2 14815 . . 3 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ (((1 + (2 · 𝑁)) / 2) · ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1)))))
24288, 97addcomd 10678 . . . . . 6 (𝑁 ∈ ℕ → (1 + (2 · 𝑁)) = ((2 · 𝑁) + 1))
243242oveq1d 7022 . . . . 5 (𝑁 ∈ ℕ → ((1 + (2 · 𝑁)) / 2) = (((2 · 𝑁) + 1) / 2))
244243oveq1d 7022 . . . 4 (𝑁 ∈ ℕ → (((1 + (2 · 𝑁)) / 2) · ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1)))) = ((((2 · 𝑁) + 1) / 2) · ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1)))))
245243, 125eqeltrrd 2882 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / 2) ∈ ℂ)
24641, 88addcld 10495 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
247 nnne0 11508 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
248246, 41, 247divcld 11253 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
24947, 49readdcld 10505 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
25047ltp1d 11407 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
25151, 47, 249, 52, 250lttrd 10637 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
252251gt0ne0d 11041 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
253246, 41, 252, 247divne0d 11269 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ≠ 0)
254248, 253logcld 24823 . . . . 5 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
25585, 98, 57divcld 11253 . . . . 5 (𝑁 ∈ ℕ → (2 / ((2 · 𝑁) + 1)) ∈ ℂ)
256245, 254, 255subdid 10933 . . . 4 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / 2) · ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1)))) = (((((2 · 𝑁) + 1) / 2) · (log‘((𝑁 + 1) / 𝑁))) − ((((2 · 𝑁) + 1) / 2) · (2 / ((2 · 𝑁) + 1)))))
25797, 88addcomd 10678 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) = (1 + (2 · 𝑁)))
258257oveq1d 7022 . . . . . 6 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1) / 2) = ((1 + (2 · 𝑁)) / 2))
259258oveq1d 7022 . . . . 5 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / 2) · (log‘((𝑁 + 1) / 𝑁))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
260196a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
26198, 85, 57, 260divcan6d 11272 . . . . 5 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1) / 2) · (2 / ((2 · 𝑁) + 1))) = 1)
262259, 261oveq12d 7025 . . . 4 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1) / 2) · (log‘((𝑁 + 1) / 𝑁))) − ((((2 · 𝑁) + 1) / 2) · (2 / ((2 · 𝑁) + 1)))) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
263244, 256, 2623eqtrd 2833 . . 3 (𝑁 ∈ ℕ → (((1 + (2 · 𝑁)) / 2) · ((log‘((𝑁 + 1) / 𝑁)) − (2 / ((2 · 𝑁) + 1)))) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
264241, 263breqtrd 4982 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
265 stirlinglem7.1 . . 3 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
266 oveq2 7015 . . . . . . 7 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
267266oveq2d 7023 . . . . . 6 (𝑛 = 𝑁 → (1 + (2 · 𝑛)) = (1 + (2 · 𝑁)))
268267oveq1d 7022 . . . . 5 (𝑛 = 𝑁 → ((1 + (2 · 𝑛)) / 2) = ((1 + (2 · 𝑁)) / 2))
269 oveq1 7014 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
270 id 22 . . . . . . 7 (𝑛 = 𝑁𝑛 = 𝑁)
271269, 270oveq12d 7025 . . . . . 6 (𝑛 = 𝑁 → ((𝑛 + 1) / 𝑛) = ((𝑁 + 1) / 𝑁))
272271fveq2d 6534 . . . . 5 (𝑛 = 𝑁 → (log‘((𝑛 + 1) / 𝑛)) = (log‘((𝑁 + 1) / 𝑁)))
273268, 272oveq12d 7025 . . . 4 (𝑛 = 𝑁 → (((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
274273oveq1d 7022 . . 3 (𝑛 = 𝑁 → ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
275 id 22 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
276125, 254mulcld 10496 . . . 4 (𝑁 ∈ ℕ → (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
277276, 88subcld 10834 . . 3 (𝑁 ∈ ℕ → ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ)
278265, 274, 275, 277fvmptd3 6648 . 2 (𝑁 ∈ ℕ → (𝐽𝑁) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
279264, 278breqtrrd 4984 1 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ (𝐽𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  wne 2982  Vcvv 3432   class class class wbr 4956  cmpt 5035  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  1c1 10373   + caddc 10375   · cmul 10377   < clt 10510  cle 10511  cmin 10706   / cdiv 11134  cn 11475  2c2 11529  0cn0 11734  cz 11818  cuz 12082  +crp 12228  ...cfz 12731  seqcseq 13207  cexp 13267  cli 14663  logclog 24807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-xnn0 11805  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-tan 15246  df-pi 15247  df-dvds 15429  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-lp 21416  df-perf 21417  df-cn 21507  df-cnp 21508  df-haus 21595  df-cmp 21667  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-limc 24135  df-dv 24136  df-ulm 24636  df-log 24809
This theorem is referenced by:  stirlinglem9  41863
  Copyright terms: Public domain W3C validator