MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserex Structured version   Visualization version   GIF version

Theorem iserex 15705
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserex.2 (𝜑𝑁𝑍)
iserex.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
iserex (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 14055 . . . . 5 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
21eleq1d 2829 . . . 4 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
32bicomd 223 . . 3 (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
43a1i 11 . 2 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
5 simpll 766 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
6 iserex.2 . . . . . . . . . . . 12 (𝜑𝑁𝑍)
7 clim2ser.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7eleqtrdi 2854 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
9 eluzelz 12913 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
1110zcnd 12748 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
12 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
13 npcan 11545 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
1411, 12, 13sylancl 585 . . . . . . . 8 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1514seqeq1d 14058 . . . . . . 7 (𝜑 → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
165, 15syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
17 simplr 768 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ (ℤ𝑀))
1817, 7eleqtrrdi 2855 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
19 iserex.3 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
205, 19sylan 579 . . . . . . 7 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
21 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
22 climdm 15600 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2321, 22sylib 218 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
247, 18, 20, 23clim2ser 15703 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
2516, 24eqbrtrrd 5190 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
26 climrel 15538 . . . . . 6 Rel ⇝
2726releldmi 5973 . . . . 5 (seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
2825, 27syl 17 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
29 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
3029, 7eleqtrrdi 2855 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
3130adantr 480 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
32 simpll 766 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
3332, 19sylan 579 . . . . . 6 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3432, 15syl 17 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
35 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
36 climdm 15600 . . . . . . . 8 (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3735, 36sylib 218 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3834, 37eqbrtrd 5188 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
397, 31, 33, 38clim2ser2 15704 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
4026releldmi 5973 . . . . 5 (seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4139, 40syl 17 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4228, 41impbida 800 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
4342ex 412 . 2 (𝜑 → ((𝑁 − 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
44 uzm1 12941 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
458, 44syl 17 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
464, 43, 45mpjaod 859 1 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187  cmin 11520  cz 12639  cuz 12903  seqcseq 14052  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  isumsplit  15888  isumrpcl  15891  climcnds  15899  geolim2  15919  cvgrat  15931  mertenslem1  15932  mertenslem2  15933  mertens  15934  eftlcvg  16154  rpnnen2lem5  16266  prmreclem5  16967  prmreclem6  16968  dvradcnv  26482  abelthlem7  26500  log2tlbnd  27006  lgamgulmlem4  27093  cvgdvgrat  44282  binomcxplemnotnn0  44325
  Copyright terms: Public domain W3C validator