MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserex Structured version   Visualization version   GIF version

Theorem iserex 15006
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserex.2 (𝜑𝑁𝑍)
iserex.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
iserex (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserex
StepHypRef Expression
1 seqeq1 13365 . . . . 5 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
21eleq1d 2901 . . . 4 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
32bicomd 224 . . 3 (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
43a1i 11 . 2 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
5 simpll 763 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
6 iserex.2 . . . . . . . . . . . 12 (𝜑𝑁𝑍)
7 clim2ser.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
86, 7syl6eleq 2927 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
9 eluzelz 12245 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
1110zcnd 12080 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
12 ax-1cn 10587 . . . . . . . . 9 1 ∈ ℂ
13 npcan 10887 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
1411, 12, 13sylancl 586 . . . . . . . 8 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1514seqeq1d 13368 . . . . . . 7 (𝜑 → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
165, 15syl 17 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
17 simplr 765 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ (ℤ𝑀))
1817, 7syl6eleqr 2928 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
19 iserex.3 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
205, 19sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
21 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
22 climdm 14904 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
2321, 22sylib 219 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
247, 18, 20, 23clim2ser 15004 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
2516, 24eqbrtrrd 5086 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
26 climrel 14842 . . . . . 6 Rel ⇝
2726releldmi 5816 . . . . 5 (seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
2825, 27syl 17 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
29 simpr 485 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
3029, 7syl6eleqr 2928 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
3130adantr 481 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍)
32 simpll 763 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → 𝜑)
3332, 19sylan 580 . . . . . 6 ((((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3432, 15syl 17 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹))
35 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
36 climdm 14904 . . . . . . . 8 (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3735, 36sylib 219 . . . . . . 7 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
3834, 37eqbrtrd 5084 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹)))
397, 31, 33, 38clim2ser2 15005 . . . . 5 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))))
4026releldmi 5816 . . . . 5 (seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4139, 40syl 17 . . . 4 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4228, 41impbida 797 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
4342ex 413 . 2 (𝜑 → ((𝑁 − 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )))
44 uzm1 12268 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
458, 44syl 17 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
464, 43, 45mpjaod 856 1 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2107   class class class wbr 5062  dom cdm 5553  cfv 6351  (class class class)co 7151  cc 10527  1c1 10530   + caddc 10532  cmin 10862  cz 11973  cuz 12235  seqcseq 13362  cli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838
This theorem is referenced by:  isumsplit  15187  isumrpcl  15190  climcnds  15198  geolim2  15219  cvgrat  15231  mertenslem1  15232  mertenslem2  15233  mertens  15234  eftlcvg  15451  rpnnen2lem5  15563  prmreclem5  16248  prmreclem6  16249  dvradcnv  24926  abelthlem7  24943  log2tlbnd  25439  lgamgulmlem4  25525  cvgdvgrat  40512  binomcxplemnotnn0  40555
  Copyright terms: Public domain W3C validator