Proof of Theorem iserex
| Step | Hyp | Ref
| Expression |
| 1 | | seqeq1 14045 |
. . . . 5
⊢ (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 2 | 1 | eleq1d 2826 |
. . . 4
⊢ (𝑁 = 𝑀 → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ )) |
| 3 | 2 | bicomd 223 |
. . 3
⊢ (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))) |
| 5 | | simpll 767 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝜑) |
| 6 | | iserex.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| 7 | | clim2ser.1 |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 8 | 6, 7 | eleqtrdi 2851 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 9 | | eluzelz 12888 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 11 | 10 | zcnd 12723 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 12 | | ax-1cn 11213 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 13 | | npcan 11517 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 14 | 11, 12, 13 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 15 | 14 | seqeq1d 14048 |
. . . . . . 7
⊢ (𝜑 → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹)) |
| 16 | 5, 15 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹)) |
| 17 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 18 | 17, 7 | eleqtrrdi 2852 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍) |
| 19 | | iserex.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 20 | 5, 19 | sylan 580 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 21 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 22 | | climdm 15590 |
. . . . . . . 8
⊢ (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) |
| 23 | 21, 22 | sylib 218 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹))) |
| 24 | 7, 18, 20, 23 | clim2ser 15691 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (( ⇝
‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1)))) |
| 25 | 16, 24 | eqbrtrrd 5167 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1)))) |
| 26 | | climrel 15528 |
. . . . . 6
⊢ Rel
⇝ |
| 27 | 26 | releldmi 5959 |
. . . . 5
⊢ (seq𝑁( + , 𝐹) ⇝ (( ⇝ ‘seq𝑀( + , 𝐹)) − (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 28 | 25, 27 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 29 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 30 | 29, 7 | eleqtrrdi 2852 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝑁 − 1) ∈ 𝑍) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → (𝑁 − 1) ∈ 𝑍) |
| 32 | | simpll 767 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → 𝜑) |
| 33 | 32, 19 | sylan 580 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 34 | 32, 15 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) = seq𝑁( + , 𝐹)) |
| 35 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 36 | | climdm 15590 |
. . . . . . . 8
⊢ (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹))) |
| 37 | 35, 36 | sylib 218 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑁( + , 𝐹) ⇝ ( ⇝ ‘seq𝑁( + , 𝐹))) |
| 38 | 34, 37 | eqbrtrd 5165 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ ( ⇝
‘seq𝑁( + , 𝐹))) |
| 39 | 7, 31, 33, 38 | clim2ser2 15692 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1)))) |
| 40 | 26 | releldmi 5959 |
. . . . 5
⊢ (seq𝑀( + , 𝐹) ⇝ (( ⇝ ‘seq𝑁( + , 𝐹)) + (seq𝑀( + , 𝐹)‘(𝑁 − 1))) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 41 | 39, 40 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) ∧ seq𝑁( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 42 | 28, 41 | impbida 801 |
. . 3
⊢ ((𝜑 ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
| 43 | 42 | ex 412 |
. 2
⊢ (𝜑 → ((𝑁 − 1) ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))) |
| 44 | | uzm1 12916 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈
(ℤ≥‘𝑀))) |
| 45 | 8, 44 | syl 17 |
. 2
⊢ (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈
(ℤ≥‘𝑀))) |
| 46 | 4, 43, 45 | mpjaod 861 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |