MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodser Structured version   Visualization version   GIF version

Theorem fprodser 15832
Description: A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fprodser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fprodser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodser (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodser
Dummy variables 𝑗 𝑚 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfc 15828 . 2 𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ∏𝑘 ∈ (𝑀...𝑁)𝐴
2 fveq2 6842 . . . 4 (𝑗 = ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
3 fprodser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12773 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 12608 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
7 eluzel2 12768 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
83, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
98zcnd 12608 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
10 1cnd 11150 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
116, 9, 10subadd23d 11534 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) = (𝑁 + (1 − 𝑀)))
1211eqcomd 2742 . . . . 5 (𝜑 → (𝑁 + (1 − 𝑀)) = ((𝑁𝑀) + 1))
13 uznn0sub 12802 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
143, 13syl 17 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ0)
15 nn0p1nn 12452 . . . . . 6 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀) + 1) ∈ ℕ)
1614, 15syl 17 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ ℕ)
1712, 16eqeltrd 2838 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℕ)
1810, 9pncan3d 11515 . . . . . . . . . . 11 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
196, 10, 9pnpncand 11576 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 − 𝑀)) + (𝑀 − 1)) = 𝑁)
2018, 19oveq12d 7375 . . . . . . . . . 10 (𝜑 → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
2120eleq2d 2823 . . . . . . . . 9 (𝜑 → (𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) ↔ 𝑝 ∈ (𝑀...𝑁)))
2221biimpa 477 . . . . . . . 8 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → 𝑝 ∈ (𝑀...𝑁))
23 elfzelz 13441 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℤ)
2423zcnd 12608 . . . . . . . . . . . 12 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℂ)
2524adantl 482 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℂ)
26 peano2zm 12546 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
278, 26syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ∈ ℤ)
2827zcnd 12608 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℂ)
2928adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℂ)
3025, 29npcand 11516 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) = 𝑝)
31 simpr 485 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ (𝑀...𝑁))
3230, 31eqeltrd 2838 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
33 ovex 7390 . . . . . . . . . 10 (𝑝 − (𝑀 − 1)) ∈ V
34 oveq1 7364 . . . . . . . . . . 11 (𝑛 = (𝑝 − (𝑀 − 1)) → (𝑛 + (𝑀 − 1)) = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
3534eleq1d 2822 . . . . . . . . . 10 (𝑛 = (𝑝 − (𝑀 − 1)) → ((𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁)))
3633, 35sbcie 3782 . . . . . . . . 9 ([(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
3732, 36sylibr 233 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3822, 37syldan 591 . . . . . . 7 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3938ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
40 1zzd 12534 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4117nnzd 12526 . . . . . . 7 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℤ)
42 fzshftral 13529 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4340, 41, 27, 42syl3anc 1371 . . . . . 6 (𝜑 → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4439, 43mpbird 256 . . . . 5 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
458adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
465adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
4723adantl 482 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℤ)
4827adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℤ)
49 fzsubel 13477 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑝 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5045, 46, 47, 48, 49syl22anc 837 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5131, 50mpbid 231 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))))
529, 10nncand 11517 . . . . . . . . . . 11 (𝜑 → (𝑀 − (𝑀 − 1)) = 1)
536, 9, 10subsub2d 11541 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑀 − 1)) = (𝑁 + (1 − 𝑀)))
5452, 53oveq12d 7375 . . . . . . . . . 10 (𝜑 → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5554adantr 481 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5651, 55eleqtrd 2840 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))))
5730eqcomd 2742 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
5834rspceeqv 3595 . . . . . . . 8 (((𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
5956, 57, 58syl2anc 584 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
60 elfzelz 13441 . . . . . . . . . . . 12 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℤ)
6160zcnd 12608 . . . . . . . . . . 11 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℂ)
62 elfzelz 13441 . . . . . . . . . . . 12 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℤ)
6362zcnd 12608 . . . . . . . . . . 11 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℂ)
6461, 63anim12i 613 . . . . . . . . . 10 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ))
65 eqtr2 2760 . . . . . . . . . . 11 ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
66 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑛 ∈ ℂ)
67 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑚 ∈ ℂ)
6828adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑀 − 1) ∈ ℂ)
6966, 67, 68addcan2d 11359 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)) ↔ 𝑛 = 𝑚))
7065, 69imbitrid 243 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7164, 70sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7271ralrimivva 3197 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7372adantr 481 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
74 oveq1 7364 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
7574eqeq2d 2747 . . . . . . . 8 (𝑛 = 𝑚 → (𝑝 = (𝑛 + (𝑀 − 1)) ↔ 𝑝 = (𝑚 + (𝑀 − 1))))
7675reu4 3689 . . . . . . 7 (∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ↔ (∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)))
7759, 73, 76sylanbrc 583 . . . . . 6 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
7877ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
79 eqid 2736 . . . . . 6 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))) = (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))
8079f1ompt 7059 . . . . 5 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))))
8144, 78, 80sylanbrc 583 . . . 4 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁))
82 fprodser.3 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
8382fmpttd 7063 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶ℂ)
8483ffvelcdmda 7035 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) ∈ ℂ)
85 simpr 485 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))
86 1zzd 12534 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 1 ∈ ℤ)
8741adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑁 + (1 − 𝑀)) ∈ ℤ)
8862adantl 482 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ ℤ)
8927adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑀 − 1) ∈ ℤ)
90 fzaddel 13475 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9186, 87, 88, 89, 90syl22anc 837 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9285, 91mpbid 231 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
9320adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
9492, 93eleqtrd 2840 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁))
95 fprodser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
9695ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴)
97 nfcsb1v 3880 . . . . . . . . 9 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴
9897nfeq2 2924 . . . . . . . 8 𝑘(𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴
99 fveq2 6842 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐹𝑘) = (𝐹‘(𝑚 + (𝑀 − 1))))
100 csbeq1a 3869 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → 𝐴 = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10199, 100eqeq12d 2752 . . . . . . . 8 (𝑘 = (𝑚 + (𝑀 − 1)) → ((𝐹𝑘) = 𝐴 ↔ (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10298, 101rspc 3569 . . . . . . 7 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴 → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10396, 102mpan9 507 . . . . . 6 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10494, 103syldan 591 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
105 f1of 6784 . . . . . . . 8 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
10681, 105syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
107 fvco3 6940 . . . . . . 7 (((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
108106, 107sylan 580 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
109 ovex 7390 . . . . . . . . 9 (𝑚 + (𝑀 − 1)) ∈ V
11074, 79, 109fvmpt 6948 . . . . . . . 8 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
111110adantl 482 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
112111fveq2d 6846 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝐹‘(𝑚 + (𝑀 − 1))))
113108, 112eqtrd 2776 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘(𝑚 + (𝑀 − 1))))
114111fveq2d 6846 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))))
11582ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
11697nfel1 2923 . . . . . . . . . 10 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ
117100eleq1d 2822 . . . . . . . . . 10 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐴 ∈ ℂ ↔ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
118116, 117rspc 3569 . . . . . . . . 9 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
119115, 118mpan9 507 . . . . . . . 8 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
12094, 119syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
121 eqid 2736 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
122121fvmpts 6951 . . . . . . 7 (((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
12394, 120, 122syl2anc 584 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
124114, 123eqtrd 2776 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
125104, 113, 1243eqtr4d 2786 . . . 4 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
1262, 17, 81, 84, 125fprod 15824 . . 3 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))))
127 nnuz 12806 . . . . 5 ℕ = (ℤ‘1)
12817, 127eleqtrdi 2848 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ (ℤ‘1))
129128, 27, 113seqshft2 13934 . . 3 (𝜑 → (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))) = (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
13018seqeq1d 13912 . . . 4 (𝜑 → seq(1 + (𝑀 − 1))( · , 𝐹) = seq𝑀( · , 𝐹))
131130, 19fveq12d 6849 . . 3 (𝜑 → (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (seq𝑀( · , 𝐹)‘𝑁))
132126, 129, 1313eqtrd 2780 . 2 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq𝑀( · , 𝐹)‘𝑁))
1331, 132eqtr3id 2790 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  ∃!wreu 3351  [wsbc 3739  csb 3855  cmpt 5188  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  cprod 15788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789
This theorem is referenced by:  fprodfac  15856  iprodclim3  15883
  Copyright terms: Public domain W3C validator