| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | prodfc 15982 | . 2
⊢
∏𝑗 ∈
(𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ∏𝑘 ∈ (𝑀...𝑁)𝐴 | 
| 2 |  | fveq2 6905 | . . . 4
⊢ (𝑗 = ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚))) | 
| 3 |  | fprodser.2 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 4 |  | eluzelz 12889 | . . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | 
| 5 | 3, 4 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 6 | 5 | zcnd 12725 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 7 |  | eluzel2 12884 | . . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 8 | 3, 7 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 9 | 8 | zcnd 12725 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 10 |  | 1cnd 11257 | . . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) | 
| 11 | 6, 9, 10 | subadd23d 11643 | . . . . . 6
⊢ (𝜑 → ((𝑁 − 𝑀) + 1) = (𝑁 + (1 − 𝑀))) | 
| 12 | 11 | eqcomd 2742 | . . . . 5
⊢ (𝜑 → (𝑁 + (1 − 𝑀)) = ((𝑁 − 𝑀) + 1)) | 
| 13 |  | uznn0sub 12918 | . . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈
ℕ0) | 
| 14 | 3, 13 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝑁 − 𝑀) ∈
ℕ0) | 
| 15 |  | nn0p1nn 12567 | . . . . . 6
⊢ ((𝑁 − 𝑀) ∈ ℕ0 → ((𝑁 − 𝑀) + 1) ∈ ℕ) | 
| 16 | 14, 15 | syl 17 | . . . . 5
⊢ (𝜑 → ((𝑁 − 𝑀) + 1) ∈ ℕ) | 
| 17 | 12, 16 | eqeltrd 2840 | . . . 4
⊢ (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℕ) | 
| 18 | 10, 9 | pncan3d 11624 | . . . . . . . . . . 11
⊢ (𝜑 → (1 + (𝑀 − 1)) = 𝑀) | 
| 19 | 6, 10, 9 | pnpncand 11685 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 + (1 − 𝑀)) + (𝑀 − 1)) = 𝑁) | 
| 20 | 18, 19 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝜑 → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁)) | 
| 21 | 20 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝜑 → (𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) ↔ 𝑝 ∈ (𝑀...𝑁))) | 
| 22 | 21 | biimpa 476 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → 𝑝 ∈ (𝑀...𝑁)) | 
| 23 |  | elfzelz 13565 | . . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℤ) | 
| 24 | 23 | zcnd 12725 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℂ) | 
| 25 | 24 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℂ) | 
| 26 |  | peano2zm 12662 | . . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) | 
| 27 | 8, 26 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) | 
| 28 | 27 | zcnd 12725 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 − 1) ∈ ℂ) | 
| 29 | 28 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℂ) | 
| 30 | 25, 29 | npcand 11625 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) = 𝑝) | 
| 31 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ (𝑀...𝑁)) | 
| 32 | 30, 31 | eqeltrd 2840 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 33 |  | ovex 7465 | . . . . . . . . . 10
⊢ (𝑝 − (𝑀 − 1)) ∈ V | 
| 34 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑛 = (𝑝 − (𝑀 − 1)) → (𝑛 + (𝑀 − 1)) = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) | 
| 35 | 34 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝑛 = (𝑝 − (𝑀 − 1)) → ((𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))) | 
| 36 | 33, 35 | sbcie 3829 | . . . . . . . . 9
⊢
([(𝑝 −
(𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 37 | 32, 36 | sylibr 234 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 38 | 22, 37 | syldan 591 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 39 | 38 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 40 |  | 1zzd 12650 | . . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) | 
| 41 | 17 | nnzd 12642 | . . . . . . 7
⊢ (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℤ) | 
| 42 |  | fzshftral 13656 | . . . . . . 7
⊢ ((1
∈ ℤ ∧ (𝑁 +
(1 − 𝑀)) ∈
ℤ ∧ (𝑀 − 1)
∈ ℤ) → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))) | 
| 43 | 40, 41, 27, 42 | syl3anc 1372 | . . . . . 6
⊢ (𝜑 → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))) | 
| 44 | 39, 43 | mpbird 257 | . . . . 5
⊢ (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 45 | 8 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) | 
| 46 | 5 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) | 
| 47 | 23 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℤ) | 
| 48 | 27 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℤ) | 
| 49 |  | fzsubel 13601 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑝 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ))
→ (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))))) | 
| 50 | 45, 46, 47, 48, 49 | syl22anc 838 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))))) | 
| 51 | 31, 50 | mpbid 232 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))) | 
| 52 | 9, 10 | nncand 11626 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑀 − (𝑀 − 1)) = 1) | 
| 53 | 6, 9, 10 | subsub2d 11650 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − (𝑀 − 1)) = (𝑁 + (1 − 𝑀))) | 
| 54 | 52, 53 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀)))) | 
| 55 | 54 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀)))) | 
| 56 | 51, 55 | eleqtrd 2842 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀)))) | 
| 57 | 30 | eqcomd 2742 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) | 
| 58 | 34 | rspceeqv 3644 | . . . . . . . 8
⊢ (((𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))) | 
| 59 | 56, 57, 58 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))) | 
| 60 |  | elfzelz 13565 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℤ) | 
| 61 | 60 | zcnd 12725 | . . . . . . . . . . 11
⊢ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℂ) | 
| 62 |  | elfzelz 13565 | . . . . . . . . . . . 12
⊢ (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℤ) | 
| 63 | 62 | zcnd 12725 | . . . . . . . . . . 11
⊢ (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℂ) | 
| 64 | 61, 63 | anim12i 613 | . . . . . . . . . 10
⊢ ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) | 
| 65 |  | eqtr2 2760 | . . . . . . . . . . 11
⊢ ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1))) | 
| 66 |  | simprl 770 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑛 ∈ ℂ) | 
| 67 |  | simprr 772 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑚 ∈ ℂ) | 
| 68 | 28 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑀 − 1) ∈ ℂ) | 
| 69 | 66, 67, 68 | addcan2d 11466 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)) ↔ 𝑛 = 𝑚)) | 
| 70 | 65, 69 | imbitrid 244 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)) | 
| 71 | 64, 70 | sylan2 593 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)) | 
| 72 | 71 | ralrimivva 3201 | . . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)) | 
| 73 | 72 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)) | 
| 74 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1))) | 
| 75 | 74 | eqeq2d 2747 | . . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑝 = (𝑛 + (𝑀 − 1)) ↔ 𝑝 = (𝑚 + (𝑀 − 1)))) | 
| 76 | 75 | reu4 3736 | . . . . . . 7
⊢
(∃!𝑛 ∈
(1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ↔ (∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))) | 
| 77 | 59, 73, 76 | sylanbrc 583 | . . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (𝑀...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))) | 
| 78 | 77 | ralrimiva 3145 | . . . . 5
⊢ (𝜑 → ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))) | 
| 79 |  | eqid 2736 | . . . . . 6
⊢ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))) = (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))) | 
| 80 | 79 | f1ompt 7130 | . . . . 5
⊢ ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))) | 
| 81 | 44, 78, 80 | sylanbrc 583 | . . . 4
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁)) | 
| 82 |  | fprodser.3 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | 
| 83 | 82 | fmpttd 7134 | . . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶ℂ) | 
| 84 | 83 | ffvelcdmda 7103 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) ∈ ℂ) | 
| 85 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) | 
| 86 |  | 1zzd 12650 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 1 ∈
ℤ) | 
| 87 | 41 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑁 + (1 − 𝑀)) ∈ ℤ) | 
| 88 | 62 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ ℤ) | 
| 89 | 27 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑀 − 1) ∈ ℤ) | 
| 90 |  | fzaddel 13599 | . . . . . . . . 9
⊢ (((1
∈ ℤ ∧ (𝑁 +
(1 − 𝑀)) ∈
ℤ) ∧ (𝑚 ∈
ℤ ∧ (𝑀 − 1)
∈ ℤ)) → (𝑚
∈ (1...(𝑁 + (1 −
𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))) | 
| 91 | 86, 87, 88, 89, 90 | syl22anc 838 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))) | 
| 92 | 85, 91 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) | 
| 93 | 20 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁)) | 
| 94 | 92, 93 | eleqtrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) | 
| 95 |  | fprodser.1 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = 𝐴) | 
| 96 | 95 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = 𝐴) | 
| 97 |  | nfcsb1v 3922 | . . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 | 
| 98 | 97 | nfeq2 2922 | . . . . . . . 8
⊢
Ⅎ𝑘(𝐹‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 | 
| 99 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐹‘𝑘) = (𝐹‘(𝑚 + (𝑀 − 1)))) | 
| 100 |  | csbeq1a 3912 | . . . . . . . . 9
⊢ (𝑘 = (𝑚 + (𝑀 − 1)) → 𝐴 = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴) | 
| 101 | 99, 100 | eqeq12d 2752 | . . . . . . . 8
⊢ (𝑘 = (𝑚 + (𝑀 − 1)) → ((𝐹‘𝑘) = 𝐴 ↔ (𝐹‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴)) | 
| 102 | 98, 101 | rspc 3609 | . . . . . . 7
⊢ ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = 𝐴 → (𝐹‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴)) | 
| 103 | 96, 102 | mpan9 506 | . . . . . 6
⊢ ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝐹‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴) | 
| 104 | 94, 103 | syldan 591 | . . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴) | 
| 105 |  | f1of 6847 | . . . . . . . 8
⊢ ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁)) | 
| 106 | 81, 105 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁)) | 
| 107 |  | fvco3 7007 | . . . . . . 7
⊢ (((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚))) | 
| 108 | 106, 107 | sylan 580 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚))) | 
| 109 |  | ovex 7465 | . . . . . . . . 9
⊢ (𝑚 + (𝑀 − 1)) ∈ V | 
| 110 | 74, 79, 109 | fvmpt 7015 | . . . . . . . 8
⊢ (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1))) | 
| 111 | 110 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1))) | 
| 112 | 111 | fveq2d 6909 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝐹‘(𝑚 + (𝑀 − 1)))) | 
| 113 | 108, 112 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘(𝑚 + (𝑀 − 1)))) | 
| 114 | 111 | fveq2d 6909 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1)))) | 
| 115 | 82 | ralrimiva 3145 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) | 
| 116 | 97 | nfel1 2921 | . . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 ∈ ℂ | 
| 117 | 100 | eleq1d 2825 | . . . . . . . . . 10
⊢ (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐴 ∈ ℂ ↔ ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 ∈ ℂ)) | 
| 118 | 116, 117 | rspc 3609 | . . . . . . . . 9
⊢ ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 ∈ ℂ)) | 
| 119 | 115, 118 | mpan9 506 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 ∈ ℂ) | 
| 120 | 94, 119 | syldan 591 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 ∈ ℂ) | 
| 121 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) | 
| 122 | 121 | fvmpts 7018 | . . . . . . 7
⊢ (((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴) | 
| 123 | 94, 120, 122 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴) | 
| 124 | 114, 123 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = ⦋(𝑚 + (𝑀 − 1)) / 𝑘⦌𝐴) | 
| 125 | 104, 113,
124 | 3eqtr4d 2786 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚))) | 
| 126 | 2, 17, 81, 84, 125 | fprod 15978 | . . 3
⊢ (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀)))) | 
| 127 |  | nnuz 12922 | . . . . 5
⊢ ℕ =
(ℤ≥‘1) | 
| 128 | 17, 127 | eleqtrdi 2850 | . . . 4
⊢ (𝜑 → (𝑁 + (1 − 𝑀)) ∈
(ℤ≥‘1)) | 
| 129 | 128, 27, 113 | seqshft2 14070 | . . 3
⊢ (𝜑 → (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))) = (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) | 
| 130 | 18 | seqeq1d 14049 | . . . 4
⊢ (𝜑 → seq(1 + (𝑀 − 1))( · , 𝐹) = seq𝑀( · , 𝐹)) | 
| 131 | 130, 19 | fveq12d 6912 | . . 3
⊢ (𝜑 → (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (seq𝑀( · , 𝐹)‘𝑁)) | 
| 132 | 126, 129,
131 | 3eqtrd 2780 | . 2
⊢ (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq𝑀( · , 𝐹)‘𝑁)) | 
| 133 | 1, 132 | eqtr3id 2790 | 1
⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁)) |