MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodser Structured version   Visualization version   GIF version

Theorem fprodser 15356
Description: A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fprodser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fprodser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodser (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodser
Dummy variables 𝑗 𝑚 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfc 15352 . 2 𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ∏𝑘 ∈ (𝑀...𝑁)𝐴
2 fveq2 6662 . . . 4 (𝑗 = ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
3 fprodser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12297 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 12132 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
7 eluzel2 12292 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
83, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
98zcnd 12132 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
10 1cnd 10679 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
116, 9, 10subadd23d 11062 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) = (𝑁 + (1 − 𝑀)))
1211eqcomd 2764 . . . . 5 (𝜑 → (𝑁 + (1 − 𝑀)) = ((𝑁𝑀) + 1))
13 uznn0sub 12322 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
143, 13syl 17 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ0)
15 nn0p1nn 11978 . . . . . 6 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀) + 1) ∈ ℕ)
1614, 15syl 17 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ ℕ)
1712, 16eqeltrd 2852 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℕ)
1810, 9pncan3d 11043 . . . . . . . . . . 11 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
196, 10, 9pnpncand 11104 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 − 𝑀)) + (𝑀 − 1)) = 𝑁)
2018, 19oveq12d 7173 . . . . . . . . . 10 (𝜑 → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
2120eleq2d 2837 . . . . . . . . 9 (𝜑 → (𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) ↔ 𝑝 ∈ (𝑀...𝑁)))
2221biimpa 480 . . . . . . . 8 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → 𝑝 ∈ (𝑀...𝑁))
23 elfzelz 12961 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℤ)
2423zcnd 12132 . . . . . . . . . . . 12 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℂ)
2524adantl 485 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℂ)
26 peano2zm 12069 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
278, 26syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ∈ ℤ)
2827zcnd 12132 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℂ)
2928adantr 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℂ)
3025, 29npcand 11044 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) = 𝑝)
31 simpr 488 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ (𝑀...𝑁))
3230, 31eqeltrd 2852 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
33 ovex 7188 . . . . . . . . . 10 (𝑝 − (𝑀 − 1)) ∈ V
34 oveq1 7162 . . . . . . . . . . 11 (𝑛 = (𝑝 − (𝑀 − 1)) → (𝑛 + (𝑀 − 1)) = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
3534eleq1d 2836 . . . . . . . . . 10 (𝑛 = (𝑝 − (𝑀 − 1)) → ((𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁)))
3633, 35sbcie 3739 . . . . . . . . 9 ([(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
3732, 36sylibr 237 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3822, 37syldan 594 . . . . . . 7 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3938ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
40 1zzd 12057 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4117nnzd 12130 . . . . . . 7 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℤ)
42 fzshftral 13049 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4340, 41, 27, 42syl3anc 1368 . . . . . 6 (𝜑 → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4439, 43mpbird 260 . . . . 5 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
458adantr 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
465adantr 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
4723adantl 485 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℤ)
4827adantr 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℤ)
49 fzsubel 12997 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑝 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5045, 46, 47, 48, 49syl22anc 837 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5131, 50mpbid 235 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))))
529, 10nncand 11045 . . . . . . . . . . 11 (𝜑 → (𝑀 − (𝑀 − 1)) = 1)
536, 9, 10subsub2d 11069 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑀 − 1)) = (𝑁 + (1 − 𝑀)))
5452, 53oveq12d 7173 . . . . . . . . . 10 (𝜑 → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5554adantr 484 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5651, 55eleqtrd 2854 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))))
5730eqcomd 2764 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
5834rspceeqv 3558 . . . . . . . 8 (((𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
5956, 57, 58syl2anc 587 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
60 elfzelz 12961 . . . . . . . . . . . 12 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℤ)
6160zcnd 12132 . . . . . . . . . . 11 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℂ)
62 elfzelz 12961 . . . . . . . . . . . 12 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℤ)
6362zcnd 12132 . . . . . . . . . . 11 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℂ)
6461, 63anim12i 615 . . . . . . . . . 10 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ))
65 eqtr2 2779 . . . . . . . . . . 11 ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
66 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑛 ∈ ℂ)
67 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑚 ∈ ℂ)
6828adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑀 − 1) ∈ ℂ)
6966, 67, 68addcan2d 10887 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)) ↔ 𝑛 = 𝑚))
7065, 69syl5ib 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7164, 70sylan2 595 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7271ralrimivva 3120 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7372adantr 484 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
74 oveq1 7162 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
7574eqeq2d 2769 . . . . . . . 8 (𝑛 = 𝑚 → (𝑝 = (𝑛 + (𝑀 − 1)) ↔ 𝑝 = (𝑚 + (𝑀 − 1))))
7675reu4 3647 . . . . . . 7 (∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ↔ (∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)))
7759, 73, 76sylanbrc 586 . . . . . 6 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
7877ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
79 eqid 2758 . . . . . 6 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))) = (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))
8079f1ompt 6871 . . . . 5 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))))
8144, 78, 80sylanbrc 586 . . . 4 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁))
82 fprodser.3 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
8382fmpttd 6875 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶ℂ)
8483ffvelrnda 6847 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) ∈ ℂ)
85 simpr 488 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))
86 1zzd 12057 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 1 ∈ ℤ)
8741adantr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑁 + (1 − 𝑀)) ∈ ℤ)
8862adantl 485 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ ℤ)
8927adantr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑀 − 1) ∈ ℤ)
90 fzaddel 12995 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9186, 87, 88, 89, 90syl22anc 837 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9285, 91mpbid 235 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
9320adantr 484 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
9492, 93eleqtrd 2854 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁))
95 fprodser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
9695ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴)
97 nfcsb1v 3831 . . . . . . . . 9 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴
9897nfeq2 2936 . . . . . . . 8 𝑘(𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴
99 fveq2 6662 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐹𝑘) = (𝐹‘(𝑚 + (𝑀 − 1))))
100 csbeq1a 3821 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → 𝐴 = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10199, 100eqeq12d 2774 . . . . . . . 8 (𝑘 = (𝑚 + (𝑀 − 1)) → ((𝐹𝑘) = 𝐴 ↔ (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10298, 101rspc 3531 . . . . . . 7 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴 → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10396, 102mpan9 510 . . . . . 6 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10494, 103syldan 594 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
105 f1of 6606 . . . . . . . 8 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
10681, 105syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
107 fvco3 6755 . . . . . . 7 (((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
108106, 107sylan 583 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
109 ovex 7188 . . . . . . . . 9 (𝑚 + (𝑀 − 1)) ∈ V
11074, 79, 109fvmpt 6763 . . . . . . . 8 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
111110adantl 485 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
112111fveq2d 6666 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝐹‘(𝑚 + (𝑀 − 1))))
113108, 112eqtrd 2793 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘(𝑚 + (𝑀 − 1))))
114111fveq2d 6666 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))))
11582ralrimiva 3113 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
11697nfel1 2935 . . . . . . . . . 10 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ
117100eleq1d 2836 . . . . . . . . . 10 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐴 ∈ ℂ ↔ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
118116, 117rspc 3531 . . . . . . . . 9 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
119115, 118mpan9 510 . . . . . . . 8 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
12094, 119syldan 594 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
121 eqid 2758 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
122121fvmpts 6766 . . . . . . 7 (((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
12394, 120, 122syl2anc 587 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
124114, 123eqtrd 2793 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
125104, 113, 1243eqtr4d 2803 . . . 4 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
1262, 17, 81, 84, 125fprod 15348 . . 3 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))))
127 nnuz 12326 . . . . 5 ℕ = (ℤ‘1)
12817, 127eleqtrdi 2862 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ (ℤ‘1))
129128, 27, 113seqshft2 13451 . . 3 (𝜑 → (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))) = (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
13018seqeq1d 13429 . . . 4 (𝜑 → seq(1 + (𝑀 − 1))( · , 𝐹) = seq𝑀( · , 𝐹))
131130, 19fveq12d 6669 . . 3 (𝜑 → (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (seq𝑀( · , 𝐹)‘𝑁))
132126, 129, 1313eqtrd 2797 . 2 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq𝑀( · , 𝐹)‘𝑁))
1331, 132syl5eqr 2807 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  ∃!wreu 3072  [wsbc 3698  csb 3807  cmpt 5115  ccom 5531  wf 6335  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7155  cc 10578  1c1 10581   + caddc 10583   · cmul 10585  cmin 10913  cn 11679  0cn0 11939  cz 12025  cuz 12287  ...cfz 12944  seqcseq 13423  cprod 15312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898  df-prod 15313
This theorem is referenced by:  fprodfac  15380  iprodclim3  15407
  Copyright terms: Public domain W3C validator