MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodser Structured version   Visualization version   GIF version

Theorem fprodser 15297
Description: A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fprodser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fprodser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodser (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodser
Dummy variables 𝑗 𝑚 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfc 15293 . 2 𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ∏𝑘 ∈ (𝑀...𝑁)𝐴
2 fveq2 6664 . . . 4 (𝑗 = ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
3 fprodser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12247 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 12082 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
7 eluzel2 12242 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
83, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
98zcnd 12082 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
10 1cnd 10630 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
116, 9, 10subadd23d 11013 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) = (𝑁 + (1 − 𝑀)))
1211eqcomd 2827 . . . . 5 (𝜑 → (𝑁 + (1 − 𝑀)) = ((𝑁𝑀) + 1))
13 uznn0sub 12271 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
143, 13syl 17 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ0)
15 nn0p1nn 11930 . . . . . 6 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀) + 1) ∈ ℕ)
1614, 15syl 17 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ ℕ)
1712, 16eqeltrd 2913 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℕ)
1810, 9pncan3d 10994 . . . . . . . . . . 11 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
196, 10, 9pnpncand 11055 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 − 𝑀)) + (𝑀 − 1)) = 𝑁)
2018, 19oveq12d 7168 . . . . . . . . . 10 (𝜑 → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
2120eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) ↔ 𝑝 ∈ (𝑀...𝑁)))
2221biimpa 479 . . . . . . . 8 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → 𝑝 ∈ (𝑀...𝑁))
23 elfzelz 12902 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℤ)
2423zcnd 12082 . . . . . . . . . . . 12 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℂ)
2524adantl 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℂ)
26 peano2zm 12019 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
278, 26syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ∈ ℤ)
2827zcnd 12082 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℂ)
2928adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℂ)
3025, 29npcand 10995 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) = 𝑝)
31 simpr 487 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ (𝑀...𝑁))
3230, 31eqeltrd 2913 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
33 ovex 7183 . . . . . . . . . 10 (𝑝 − (𝑀 − 1)) ∈ V
34 oveq1 7157 . . . . . . . . . . 11 (𝑛 = (𝑝 − (𝑀 − 1)) → (𝑛 + (𝑀 − 1)) = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
3534eleq1d 2897 . . . . . . . . . 10 (𝑛 = (𝑝 − (𝑀 − 1)) → ((𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁)))
3633, 35sbcie 3811 . . . . . . . . 9 ([(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
3732, 36sylibr 236 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3822, 37syldan 593 . . . . . . 7 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3938ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
40 1zzd 12007 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4117nnzd 12080 . . . . . . 7 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℤ)
42 fzshftral 12989 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4340, 41, 27, 42syl3anc 1367 . . . . . 6 (𝜑 → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4439, 43mpbird 259 . . . . 5 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
458adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
465adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
4723adantl 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℤ)
4827adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℤ)
49 fzsubel 12937 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑝 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5045, 46, 47, 48, 49syl22anc 836 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5131, 50mpbid 234 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))))
529, 10nncand 10996 . . . . . . . . . . 11 (𝜑 → (𝑀 − (𝑀 − 1)) = 1)
536, 9, 10subsub2d 11020 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑀 − 1)) = (𝑁 + (1 − 𝑀)))
5452, 53oveq12d 7168 . . . . . . . . . 10 (𝜑 → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5554adantr 483 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5651, 55eleqtrd 2915 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))))
5730eqcomd 2827 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
5834rspceeqv 3637 . . . . . . . 8 (((𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
5956, 57, 58syl2anc 586 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
60 elfzelz 12902 . . . . . . . . . . . 12 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℤ)
6160zcnd 12082 . . . . . . . . . . 11 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℂ)
62 elfzelz 12902 . . . . . . . . . . . 12 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℤ)
6362zcnd 12082 . . . . . . . . . . 11 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℂ)
6461, 63anim12i 614 . . . . . . . . . 10 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ))
65 eqtr2 2842 . . . . . . . . . . 11 ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
66 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑛 ∈ ℂ)
67 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑚 ∈ ℂ)
6828adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑀 − 1) ∈ ℂ)
6966, 67, 68addcan2d 10838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)) ↔ 𝑛 = 𝑚))
7065, 69syl5ib 246 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7164, 70sylan2 594 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7271ralrimivva 3191 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7372adantr 483 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
74 oveq1 7157 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
7574eqeq2d 2832 . . . . . . . 8 (𝑛 = 𝑚 → (𝑝 = (𝑛 + (𝑀 − 1)) ↔ 𝑝 = (𝑚 + (𝑀 − 1))))
7675reu4 3721 . . . . . . 7 (∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ↔ (∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)))
7759, 73, 76sylanbrc 585 . . . . . 6 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
7877ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
79 eqid 2821 . . . . . 6 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))) = (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))
8079f1ompt 6869 . . . . 5 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))))
8144, 78, 80sylanbrc 585 . . . 4 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁))
82 fprodser.3 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
8382fmpttd 6873 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶ℂ)
8483ffvelrnda 6845 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) ∈ ℂ)
85 simpr 487 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))
86 1zzd 12007 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 1 ∈ ℤ)
8741adantr 483 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑁 + (1 − 𝑀)) ∈ ℤ)
8862adantl 484 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ ℤ)
8927adantr 483 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑀 − 1) ∈ ℤ)
90 fzaddel 12935 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9186, 87, 88, 89, 90syl22anc 836 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9285, 91mpbid 234 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
9320adantr 483 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
9492, 93eleqtrd 2915 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁))
95 fprodser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
9695ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴)
97 nfcsb1v 3906 . . . . . . . . 9 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴
9897nfeq2 2995 . . . . . . . 8 𝑘(𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴
99 fveq2 6664 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐹𝑘) = (𝐹‘(𝑚 + (𝑀 − 1))))
100 csbeq1a 3896 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → 𝐴 = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10199, 100eqeq12d 2837 . . . . . . . 8 (𝑘 = (𝑚 + (𝑀 − 1)) → ((𝐹𝑘) = 𝐴 ↔ (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10298, 101rspc 3610 . . . . . . 7 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴 → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10396, 102mpan9 509 . . . . . 6 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10494, 103syldan 593 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
105 f1of 6609 . . . . . . . 8 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
10681, 105syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
107 fvco3 6754 . . . . . . 7 (((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
108106, 107sylan 582 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
109 ovex 7183 . . . . . . . . 9 (𝑚 + (𝑀 − 1)) ∈ V
11074, 79, 109fvmpt 6762 . . . . . . . 8 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
111110adantl 484 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
112111fveq2d 6668 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝐹‘(𝑚 + (𝑀 − 1))))
113108, 112eqtrd 2856 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘(𝑚 + (𝑀 − 1))))
114111fveq2d 6668 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))))
11582ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
11697nfel1 2994 . . . . . . . . . 10 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ
117100eleq1d 2897 . . . . . . . . . 10 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐴 ∈ ℂ ↔ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
118116, 117rspc 3610 . . . . . . . . 9 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
119115, 118mpan9 509 . . . . . . . 8 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
12094, 119syldan 593 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
121 eqid 2821 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
122121fvmpts 6765 . . . . . . 7 (((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
12394, 120, 122syl2anc 586 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
124114, 123eqtrd 2856 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
125104, 113, 1243eqtr4d 2866 . . . 4 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
1262, 17, 81, 84, 125fprod 15289 . . 3 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))))
127 nnuz 12275 . . . . 5 ℕ = (ℤ‘1)
12817, 127eleqtrdi 2923 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ (ℤ‘1))
129128, 27, 113seqshft2 13390 . . 3 (𝜑 → (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))) = (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
13018seqeq1d 13369 . . . 4 (𝜑 → seq(1 + (𝑀 − 1))( · , 𝐹) = seq𝑀( · , 𝐹))
131130, 19fveq12d 6671 . . 3 (𝜑 → (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (seq𝑀( · , 𝐹)‘𝑁))
132126, 129, 1313eqtrd 2860 . 2 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq𝑀( · , 𝐹)‘𝑁))
1331, 132syl5eqr 2870 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  ∃!wreu 3140  [wsbc 3771  csb 3882  cmpt 5138  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  seqcseq 13363  cprod 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-prod 15254
This theorem is referenced by:  fprodfac  15321  iprodclim3  15348
  Copyright terms: Public domain W3C validator