MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodser Structured version   Visualization version   GIF version

Theorem fprodser 15997
Description: A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodser.1 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
fprodser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fprodser.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodser (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodser
Dummy variables 𝑗 𝑚 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfc 15993 . 2 𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ∏𝑘 ∈ (𝑀...𝑁)𝐴
2 fveq2 6920 . . . 4 (𝑗 = ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
3 fprodser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12913 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 12748 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
7 eluzel2 12908 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
83, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
98zcnd 12748 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
10 1cnd 11285 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
116, 9, 10subadd23d 11669 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) = (𝑁 + (1 − 𝑀)))
1211eqcomd 2746 . . . . 5 (𝜑 → (𝑁 + (1 − 𝑀)) = ((𝑁𝑀) + 1))
13 uznn0sub 12942 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
143, 13syl 17 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ0)
15 nn0p1nn 12592 . . . . . 6 ((𝑁𝑀) ∈ ℕ0 → ((𝑁𝑀) + 1) ∈ ℕ)
1614, 15syl 17 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ ℕ)
1712, 16eqeltrd 2844 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℕ)
1810, 9pncan3d 11650 . . . . . . . . . . 11 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
196, 10, 9pnpncand 11711 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 − 𝑀)) + (𝑀 − 1)) = 𝑁)
2018, 19oveq12d 7466 . . . . . . . . . 10 (𝜑 → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
2120eleq2d 2830 . . . . . . . . 9 (𝜑 → (𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) ↔ 𝑝 ∈ (𝑀...𝑁)))
2221biimpa 476 . . . . . . . 8 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → 𝑝 ∈ (𝑀...𝑁))
23 elfzelz 13584 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℤ)
2423zcnd 12748 . . . . . . . . . . . 12 (𝑝 ∈ (𝑀...𝑁) → 𝑝 ∈ ℂ)
2524adantl 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℂ)
26 peano2zm 12686 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
278, 26syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ∈ ℤ)
2827zcnd 12748 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℂ)
2928adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℂ)
3025, 29npcand 11651 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) = 𝑝)
31 simpr 484 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ (𝑀...𝑁))
3230, 31eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
33 ovex 7481 . . . . . . . . . 10 (𝑝 − (𝑀 − 1)) ∈ V
34 oveq1 7455 . . . . . . . . . . 11 (𝑛 = (𝑝 − (𝑀 − 1)) → (𝑛 + (𝑀 − 1)) = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
3534eleq1d 2829 . . . . . . . . . 10 (𝑛 = (𝑝 − (𝑀 − 1)) → ((𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁)))
3633, 35sbcie 3848 . . . . . . . . 9 ([(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)) ∈ (𝑀...𝑁))
3732, 36sylibr 234 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3822, 37syldan 590 . . . . . . 7 ((𝜑𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))) → [(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
3938ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
40 1zzd 12674 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4117nnzd 12666 . . . . . . 7 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ ℤ)
42 fzshftral 13672 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4340, 41, 27, 42syl3anc 1371 . . . . . 6 (𝜑 → (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ↔ ∀𝑝 ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))[(𝑝 − (𝑀 − 1)) / 𝑛](𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁)))
4439, 43mpbird 257 . . . . 5 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁))
458adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
465adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
4723adantl 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 ∈ ℤ)
4827adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑀 − 1) ∈ ℤ)
49 fzsubel 13620 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑝 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5045, 46, 47, 48, 49syl22anc 838 . . . . . . . . . 10 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 ∈ (𝑀...𝑁) ↔ (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1)))))
5131, 50mpbid 232 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))))
529, 10nncand 11652 . . . . . . . . . . 11 (𝜑 → (𝑀 − (𝑀 − 1)) = 1)
536, 9, 10subsub2d 11676 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑀 − 1)) = (𝑁 + (1 − 𝑀)))
5452, 53oveq12d 7466 . . . . . . . . . 10 (𝜑 → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5554adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ((𝑀 − (𝑀 − 1))...(𝑁 − (𝑀 − 1))) = (1...(𝑁 + (1 − 𝑀))))
5651, 55eleqtrd 2846 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → (𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))))
5730eqcomd 2746 . . . . . . . 8 ((𝜑𝑝 ∈ (𝑀...𝑁)) → 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1)))
5834rspceeqv 3658 . . . . . . . 8 (((𝑝 − (𝑀 − 1)) ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑝 = ((𝑝 − (𝑀 − 1)) + (𝑀 − 1))) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
5956, 57, 58syl2anc 583 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
60 elfzelz 13584 . . . . . . . . . . . 12 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℤ)
6160zcnd 12748 . . . . . . . . . . 11 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑛 ∈ ℂ)
62 elfzelz 13584 . . . . . . . . . . . 12 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℤ)
6362zcnd 12748 . . . . . . . . . . 11 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → 𝑚 ∈ ℂ)
6461, 63anim12i 612 . . . . . . . . . 10 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ))
65 eqtr2 2764 . . . . . . . . . . 11 ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
66 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑛 ∈ ℂ)
67 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → 𝑚 ∈ ℂ)
6828adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑀 − 1) ∈ ℂ)
6966, 67, 68addcan2d 11494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)) ↔ 𝑛 = 𝑚))
7065, 69imbitrid 244 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7164, 70sylan2 592 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))) → ((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7271ralrimivva 3208 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
7372adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚))
74 oveq1 7455 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + (𝑀 − 1)) = (𝑚 + (𝑀 − 1)))
7574eqeq2d 2751 . . . . . . . 8 (𝑛 = 𝑚 → (𝑝 = (𝑛 + (𝑀 − 1)) ↔ 𝑝 = (𝑚 + (𝑀 − 1))))
7675reu4 3753 . . . . . . 7 (∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ↔ (∃𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))∀𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))((𝑝 = (𝑛 + (𝑀 − 1)) ∧ 𝑝 = (𝑚 + (𝑀 − 1))) → 𝑛 = 𝑚)))
7759, 73, 76sylanbrc 582 . . . . . 6 ((𝜑𝑝 ∈ (𝑀...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
7877ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1)))
79 eqid 2740 . . . . . 6 (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))) = (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))
8079f1ompt 7145 . . . . 5 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))(𝑛 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ ∀𝑝 ∈ (𝑀...𝑁)∃!𝑛 ∈ (1...(𝑁 + (1 − 𝑀)))𝑝 = (𝑛 + (𝑀 − 1))))
8144, 78, 80sylanbrc 582 . . . 4 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁))
82 fprodser.3 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
8382fmpttd 7149 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶ℂ)
8483ffvelcdmda 7118 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) ∈ ℂ)
85 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ (1...(𝑁 + (1 − 𝑀))))
86 1zzd 12674 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 1 ∈ ℤ)
8741adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑁 + (1 − 𝑀)) ∈ ℤ)
8862adantl 481 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → 𝑚 ∈ ℤ)
8927adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑀 − 1) ∈ ℤ)
90 fzaddel 13618 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝑁 + (1 − 𝑀)) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9186, 87, 88, 89, 90syl22anc 838 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) ↔ (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1)))))
9285, 91mpbid 232 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
9320adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((1 + (𝑀 − 1))...((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (𝑀...𝑁))
9492, 93eleqtrd 2846 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁))
95 fprodser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = 𝐴)
9695ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴)
97 nfcsb1v 3946 . . . . . . . . 9 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴
9897nfeq2 2926 . . . . . . . 8 𝑘(𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴
99 fveq2 6920 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐹𝑘) = (𝐹‘(𝑚 + (𝑀 − 1))))
100 csbeq1a 3935 . . . . . . . . 9 (𝑘 = (𝑚 + (𝑀 − 1)) → 𝐴 = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10199, 100eqeq12d 2756 . . . . . . . 8 (𝑘 = (𝑚 + (𝑀 − 1)) → ((𝐹𝑘) = 𝐴 ↔ (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10298, 101rspc 3623 . . . . . . 7 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = 𝐴 → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴))
10396, 102mpan9 506 . . . . . 6 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
10494, 103syldan 590 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
105 f1of 6862 . . . . . . . 8 ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))–1-1-onto→(𝑀...𝑁) → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
10681, 105syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁))
107 fvco3 7021 . . . . . . 7 (((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))):(1...(𝑁 + (1 − 𝑀)))⟶(𝑀...𝑁) ∧ 𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
108106, 107sylan 579 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
109 ovex 7481 . . . . . . . . 9 (𝑚 + (𝑀 − 1)) ∈ V
11074, 79, 109fvmpt 7029 . . . . . . . 8 (𝑚 ∈ (1...(𝑁 + (1 − 𝑀))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
111110adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚) = (𝑚 + (𝑀 − 1)))
112111fveq2d 6924 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝐹‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝐹‘(𝑚 + (𝑀 − 1))))
113108, 112eqtrd 2780 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = (𝐹‘(𝑚 + (𝑀 − 1))))
114111fveq2d 6924 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))))
11582ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
11697nfel1 2925 . . . . . . . . . 10 𝑘(𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ
117100eleq1d 2829 . . . . . . . . . 10 (𝑘 = (𝑚 + (𝑀 − 1)) → (𝐴 ∈ ℂ ↔ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
118116, 117rspc 3623 . . . . . . . . 9 ((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ))
119115, 118mpan9 506 . . . . . . . 8 ((𝜑 ∧ (𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁)) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
12094, 119syldan 590 . . . . . . 7 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ)
121 eqid 2740 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
122121fvmpts 7032 . . . . . . 7 (((𝑚 + (𝑀 − 1)) ∈ (𝑀...𝑁) ∧ (𝑚 + (𝑀 − 1)) / 𝑘𝐴 ∈ ℂ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
12394, 120, 122syl2anc 583 . . . . . 6 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘(𝑚 + (𝑀 − 1))) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
124114, 123eqtrd 2780 . . . . 5 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)) = (𝑚 + (𝑀 − 1)) / 𝑘𝐴)
125104, 113, 1243eqtr4d 2790 . . . 4 ((𝜑𝑚 ∈ (1...(𝑁 + (1 − 𝑀)))) → ((𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1))))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘((𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))‘𝑚)))
1262, 17, 81, 84, 125fprod 15989 . . 3 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))))
127 nnuz 12946 . . . . 5 ℕ = (ℤ‘1)
12817, 127eleqtrdi 2854 . . . 4 (𝜑 → (𝑁 + (1 − 𝑀)) ∈ (ℤ‘1))
129128, 27, 113seqshft2 14079 . . 3 (𝜑 → (seq1( · , (𝐹 ∘ (𝑛 ∈ (1...(𝑁 + (1 − 𝑀))) ↦ (𝑛 + (𝑀 − 1)))))‘(𝑁 + (1 − 𝑀))) = (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))))
13018seqeq1d 14058 . . . 4 (𝜑 → seq(1 + (𝑀 − 1))( · , 𝐹) = seq𝑀( · , 𝐹))
131130, 19fveq12d 6927 . . 3 (𝜑 → (seq(1 + (𝑀 − 1))( · , 𝐹)‘((𝑁 + (1 − 𝑀)) + (𝑀 − 1))) = (seq𝑀( · , 𝐹)‘𝑁))
132126, 129, 1313eqtrd 2784 . 2 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑗) = (seq𝑀( · , 𝐹)‘𝑁))
1331, 132eqtr3id 2794 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  [wsbc 3804  csb 3921  cmpt 5249  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cprod 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952
This theorem is referenced by:  fprodfac  16021  iprodclim3  16048
  Copyright terms: Public domain W3C validator