Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem12 Structured version   Visualization version   GIF version

Theorem stirlinglem12 46083
Description: The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem12.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem12.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem12.3 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
stirlinglem12 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐹(𝑛)

Proof of Theorem stirlinglem12
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12197 . . . . 5 1 ∈ ℕ
2 stirlinglem12.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32stirlinglem2 46073 . . . . . 6 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
4 relogcl 26484 . . . . . 6 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
51, 3, 4mp2b 10 . . . . 5 (log‘(𝐴‘1)) ∈ ℝ
6 nfcv 2891 . . . . . 6 𝑛1
7 nfcv 2891 . . . . . . 7 𝑛log
8 nfmpt1 5206 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
92, 8nfcxfr 2889 . . . . . . . 8 𝑛𝐴
109, 6nffv 6868 . . . . . . 7 𝑛(𝐴‘1)
117, 10nffv 6868 . . . . . 6 𝑛(log‘(𝐴‘1))
12 2fveq3 6863 . . . . . 6 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
13 stirlinglem12.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
146, 11, 12, 13fvmptf 6989 . . . . 5 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
151, 5, 14mp2an 692 . . . 4 (𝐵‘1) = (log‘(𝐴‘1))
1615, 5eqeltri 2824 . . 3 (𝐵‘1) ∈ ℝ
1716a1i 11 . 2 (𝑁 ∈ ℕ → (𝐵‘1) ∈ ℝ)
182stirlinglem2 46073 . . . . 5 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
1918relogcld 26532 . . . 4 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
20 nfcv 2891 . . . . 5 𝑛𝑁
219, 20nffv 6868 . . . . . 6 𝑛(𝐴𝑁)
227, 21nffv 6868 . . . . 5 𝑛(log‘(𝐴𝑁))
23 2fveq3 6863 . . . . 5 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
2420, 22, 23, 13fvmptf 6989 . . . 4 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
2519, 24mpdan 687 . . 3 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
2625, 19eqeltrd 2828 . 2 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
27 4re 12270 . . . 4 4 ∈ ℝ
28 4ne0 12294 . . . 4 4 ≠ 0
2927, 28rereccli 11947 . . 3 (1 / 4) ∈ ℝ
3029a1i 11 . 2 (𝑁 ∈ ℕ → (1 / 4) ∈ ℝ)
31 fveq2 6858 . . . . 5 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
32 fveq2 6858 . . . . 5 (𝑘 = (𝑗 + 1) → (𝐵𝑘) = (𝐵‘(𝑗 + 1)))
33 fveq2 6858 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵‘1))
34 fveq2 6858 . . . . 5 (𝑘 = 𝑁 → (𝐵𝑘) = (𝐵𝑁))
35 elnnuz 12837 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
3635biimpi 216 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
37 elfznn 13514 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
382stirlinglem2 46073 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℝ+)
3937, 38syl 17 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℝ+)
4039relogcld 26532 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (log‘(𝐴𝑘)) ∈ ℝ)
41 nfcv 2891 . . . . . . . . 9 𝑛𝑘
429, 41nffv 6868 . . . . . . . . . 10 𝑛(𝐴𝑘)
437, 42nffv 6868 . . . . . . . . 9 𝑛(log‘(𝐴𝑘))
44 2fveq3 6863 . . . . . . . . 9 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
4541, 43, 44, 13fvmptf 6989 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℝ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4637, 40, 45syl2anc 584 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4746adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4839rpcnd 12997 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℂ)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
5038rpne0d 13000 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
5137, 50syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ≠ 0)
5251adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ≠ 0)
5349, 52logcld 26479 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴𝑘)) ∈ ℂ)
5447, 53eqeltrd 2828 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
5531, 32, 33, 34, 36, 54telfsumo 15768 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵𝑁)))
56 nnz 12550 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzoval 13621 . . . . . 6 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
5856, 57syl 17 . . . . 5 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
5958sumeq1d 15666 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
6055, 59eqtr3d 2766 . . 3 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
61 fzfid 13938 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
62 elfznn 13514 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ)
6362adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ)
642stirlinglem2 46073 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴𝑗) ∈ ℝ+)
6564relogcld 26532 . . . . . . . . 9 (𝑗 ∈ ℕ → (log‘(𝐴𝑗)) ∈ ℝ)
66 nfcv 2891 . . . . . . . . . 10 𝑛𝑗
679, 66nffv 6868 . . . . . . . . . . 11 𝑛(𝐴𝑗)
687, 67nffv 6868 . . . . . . . . . 10 𝑛(log‘(𝐴𝑗))
69 2fveq3 6863 . . . . . . . . . 10 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
7066, 68, 69, 13fvmptf 6989 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ (log‘(𝐴𝑗)) ∈ ℝ) → (𝐵𝑗) = (log‘(𝐴𝑗)))
7165, 70mpdan 687 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵𝑗) = (log‘(𝐴𝑗)))
7271, 65eqeltrd 2828 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
7363, 72syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵𝑗) ∈ ℝ)
74 peano2nn 12198 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
752stirlinglem2 46073 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7776relogcld 26532 . . . . . . . . . 10 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
78 nfcv 2891 . . . . . . . . . . 11 𝑛(𝑗 + 1)
799, 78nffv 6868 . . . . . . . . . . . 12 𝑛(𝐴‘(𝑗 + 1))
807, 79nffv 6868 . . . . . . . . . . 11 𝑛(log‘(𝐴‘(𝑗 + 1)))
81 2fveq3 6863 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
8278, 80, 81, 13fvmptf 6989 . . . . . . . . . 10 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8374, 77, 82syl2anc 584 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8483, 77eqeltrd 2828 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8562, 84syl 17 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8685adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8773, 86resubcld 11606 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8861, 87fsumrecl 15700 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8929a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈ ℝ)
9062nnred 12201 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ)
91 1red 11175 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℝ)
9290, 91readdcld 11203 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ)
9390, 92remulcld 11204 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
9490recnd 11202 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ)
95 1cnd 11169 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℂ)
9694, 95addcld 11193 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ)
9762nnne0d 12236 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0)
9874nnne0d 12236 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
9962, 98syl 17 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0)
10094, 96, 97, 99mulne0d 11830 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0)
10193, 100rereccld 12009 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
102101adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
10389, 102remulcld 11204 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
10461, 103fsumrecl 15700 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
105 eqid 2729 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖))))
106 eqid 2729 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖)) = (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖))
1072, 13, 105, 106stirlinglem10 46081 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10863, 107syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10961, 87, 103, 108fsumle 15765 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11061, 102fsumrecl 15700 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
111 1red 11175 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
112 4pos 12293 . . . . . . . . 9 0 < 4
11327, 112elrpii 12954 . . . . . . . 8 4 ∈ ℝ+
114113a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℝ+)
115 0red 11177 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
116 0lt1 11700 . . . . . . . . 9 0 < 1
117116a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
118115, 111, 117ltled 11322 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 1)
119111, 114, 118divge0d 13035 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (1 / 4))
120 eqid 2729 . . . . . . . . . 10 (ℤ𝑁) = (ℤ𝑁)
121 eluznn 12877 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℕ)
122 stirlinglem12.3 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
123122a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))))
124 simpr 484 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
125124oveq1d 7402 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1))
126124, 125oveq12d 7405 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
127126oveq2d 7403 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
128 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
129 nnre 12193 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
130 1red 11175 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℝ)
131129, 130readdcld 11203 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ)
132129, 131remulcld 11204 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ)
133 nncn 12194 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
134 1cnd 11169 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℂ)
135133, 134addcld 11193 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
136 nnne0 12220 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
137133, 135, 136, 98mulne0d 11830 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0)
138132, 137rereccld 12009 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
139123, 127, 128, 138fvmptd 6975 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
140121, 139syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
141121nnred 12201 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
142 1red 11175 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
143141, 142readdcld 11203 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ)
144141, 143remulcld 11204 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
145141recnd 11202 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℂ)
146 1cnd 11169 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℂ)
147145, 146addcld 11193 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℂ)
148121nnne0d 12236 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
149121, 98syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ≠ 0)
150145, 147, 148, 149mulne0d 11830 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0)
151144, 150rereccld 12009 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
152 seqeq1 13969 . . . . . . . . . . . . 13 (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹))
153122trireciplem 15828 . . . . . . . . . . . . . 14 seq1( + , 𝐹) ⇝ 1
154 climrel 15458 . . . . . . . . . . . . . . 15 Rel ⇝
155154releldmi 5912 . . . . . . . . . . . . . 14 (seq1( + , 𝐹) ⇝ 1 → seq1( + , 𝐹) ∈ dom ⇝ )
156153, 155mp1i 13 . . . . . . . . . . . . 13 (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝ )
157152, 156eqeltrd 2828 . . . . . . . . . . . 12 (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
158157adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
159 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ ℕ)
160 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ¬ 𝑁 = 1)
161 elnn1uz2 12884 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
162159, 161sylib 218 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
163162ord 864 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈ (ℤ‘2)))
164160, 163mpd 15 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
165 uz2m1nn 12882 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 − 1) ∈ ℕ)
167 nncn 12194 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
168167adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 ∈ ℂ)
169 1cnd 11169 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 1 ∈ ℂ)
170168, 169npcand 11537 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
171170eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 = ((𝑁 − 1) + 1))
172171seqeq1d 13972 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
173 nnuz 12836 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
174 id 22 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℕ)
175138recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
176139, 175eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (𝐹𝑗) ∈ ℂ)
177176adantl 481 . . . . . . . . . . . . . . . 16 (((𝑁 − 1) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
178153a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → seq1( + , 𝐹) ⇝ 1)
179173, 174, 177, 178clim2ser 15621 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℕ → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
180179adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
181172, 180eqbrtrd 5129 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
182154releldmi 5912 . . . . . . . . . . . . 13 (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
183181, 182syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
184159, 166, 183syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
185158, 184pm2.61dan 812 . . . . . . . . . 10 (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ )
186120, 56, 140, 151, 185isumrecl 15731 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
187121nnrpd 12993 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ+)
188187rpge0d 12999 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 𝑗)
189141, 188ge0p1rpd 13025 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ+)
190187, 189rpmulcld 13011 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ+)
191118adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 1)
192142, 190, 191divge0d 13035 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1))))
193120, 56, 140, 151, 185, 192isumge0 15732 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))))
194115, 186, 110, 193leadd2dd 11793 . . . . . . . 8 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
195110recnd 11202 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
196195addridd 11374 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))))
197196eqcomd 2735 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0))
198 id 22 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
199139adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
200133adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
201 1cnd 11169 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
202200, 201addcld 11193 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℂ)
203200, 202mulcld 11194 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
204136adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0)
20598adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0)
206200, 202, 204, 205mulne0d 11830 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0)
207203, 206reccld 11951 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
208153, 155mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
209173, 120, 198, 199, 207, 208isumsplit 15806 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
210194, 197, 2093brtr4d 5139 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))))
211 1zzd 12564 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
212139adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
213175adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
214153a1i 11 . . . . . . . . 9 (⊤ → seq1( + , 𝐹) ⇝ 1)
215173, 211, 212, 213, 214isumclim 15723 . . . . . . . 8 (⊤ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1)
216215mptru 1547 . . . . . . 7 Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1
217210, 216breqtrdi 5148 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1)
218110, 111, 30, 119, 217lemul2ad 12123 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) · 1))
219 4cn 12271 . . . . . . . 8 4 ∈ ℂ
220219a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℂ)
221112a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
222221gt0ne0d 11742 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
223220, 222reccld 11951 . . . . . 6 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
224102recnd 11202 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
22561, 223, 224fsummulc2 15750 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
226223mulridd 11191 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · 1) = (1 / 4))
227218, 225, 2263brtr3d 5138 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ≤ (1 / 4))
22888, 104, 30, 109, 227letrd 11331 . . 3 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4))
22960, 228eqbrtrd 5129 . 2 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) ≤ (1 / 4))
23017, 26, 30, 229subled 11781 1 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  wne 2925   class class class wbr 5107  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  4c4 12243  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  ..^cfzo 13615  seqcseq 13966  cexp 14026  !cfa 14238  csqrt 15199  cli 15450  Σcsu 15652  eceu 16028  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466
This theorem is referenced by:  stirlinglem13  46084
  Copyright terms: Public domain W3C validator