Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem12 Structured version   Visualization version   GIF version

Theorem stirlinglem12 46081
Description: The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem12.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem12.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem12.3 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
stirlinglem12 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐹(𝑛)

Proof of Theorem stirlinglem12
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12256 . . . . 5 1 ∈ ℕ
2 stirlinglem12.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32stirlinglem2 46071 . . . . . 6 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
4 relogcl 26541 . . . . . 6 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
51, 3, 4mp2b 10 . . . . 5 (log‘(𝐴‘1)) ∈ ℝ
6 nfcv 2899 . . . . . 6 𝑛1
7 nfcv 2899 . . . . . . 7 𝑛log
8 nfmpt1 5225 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
92, 8nfcxfr 2897 . . . . . . . 8 𝑛𝐴
109, 6nffv 6891 . . . . . . 7 𝑛(𝐴‘1)
117, 10nffv 6891 . . . . . 6 𝑛(log‘(𝐴‘1))
12 2fveq3 6886 . . . . . 6 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
13 stirlinglem12.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
146, 11, 12, 13fvmptf 7012 . . . . 5 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
151, 5, 14mp2an 692 . . . 4 (𝐵‘1) = (log‘(𝐴‘1))
1615, 5eqeltri 2831 . . 3 (𝐵‘1) ∈ ℝ
1716a1i 11 . 2 (𝑁 ∈ ℕ → (𝐵‘1) ∈ ℝ)
182stirlinglem2 46071 . . . . 5 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
1918relogcld 26589 . . . 4 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
20 nfcv 2899 . . . . 5 𝑛𝑁
219, 20nffv 6891 . . . . . 6 𝑛(𝐴𝑁)
227, 21nffv 6891 . . . . 5 𝑛(log‘(𝐴𝑁))
23 2fveq3 6886 . . . . 5 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
2420, 22, 23, 13fvmptf 7012 . . . 4 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
2519, 24mpdan 687 . . 3 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
2625, 19eqeltrd 2835 . 2 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
27 4re 12329 . . . 4 4 ∈ ℝ
28 4ne0 12353 . . . 4 4 ≠ 0
2927, 28rereccli 12011 . . 3 (1 / 4) ∈ ℝ
3029a1i 11 . 2 (𝑁 ∈ ℕ → (1 / 4) ∈ ℝ)
31 fveq2 6881 . . . . 5 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
32 fveq2 6881 . . . . 5 (𝑘 = (𝑗 + 1) → (𝐵𝑘) = (𝐵‘(𝑗 + 1)))
33 fveq2 6881 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵‘1))
34 fveq2 6881 . . . . 5 (𝑘 = 𝑁 → (𝐵𝑘) = (𝐵𝑁))
35 elnnuz 12901 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
3635biimpi 216 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
37 elfznn 13575 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
382stirlinglem2 46071 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℝ+)
3937, 38syl 17 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℝ+)
4039relogcld 26589 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (log‘(𝐴𝑘)) ∈ ℝ)
41 nfcv 2899 . . . . . . . . 9 𝑛𝑘
429, 41nffv 6891 . . . . . . . . . 10 𝑛(𝐴𝑘)
437, 42nffv 6891 . . . . . . . . 9 𝑛(log‘(𝐴𝑘))
44 2fveq3 6886 . . . . . . . . 9 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
4541, 43, 44, 13fvmptf 7012 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℝ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4637, 40, 45syl2anc 584 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4746adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4839rpcnd 13058 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℂ)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
5038rpne0d 13061 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
5137, 50syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ≠ 0)
5251adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ≠ 0)
5349, 52logcld 26536 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴𝑘)) ∈ ℂ)
5447, 53eqeltrd 2835 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
5531, 32, 33, 34, 36, 54telfsumo 15823 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵𝑁)))
56 nnz 12614 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzoval 13682 . . . . . 6 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
5856, 57syl 17 . . . . 5 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
5958sumeq1d 15721 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
6055, 59eqtr3d 2773 . . 3 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
61 fzfid 13996 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
62 elfznn 13575 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ)
6362adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ)
642stirlinglem2 46071 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴𝑗) ∈ ℝ+)
6564relogcld 26589 . . . . . . . . 9 (𝑗 ∈ ℕ → (log‘(𝐴𝑗)) ∈ ℝ)
66 nfcv 2899 . . . . . . . . . 10 𝑛𝑗
679, 66nffv 6891 . . . . . . . . . . 11 𝑛(𝐴𝑗)
687, 67nffv 6891 . . . . . . . . . 10 𝑛(log‘(𝐴𝑗))
69 2fveq3 6886 . . . . . . . . . 10 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
7066, 68, 69, 13fvmptf 7012 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ (log‘(𝐴𝑗)) ∈ ℝ) → (𝐵𝑗) = (log‘(𝐴𝑗)))
7165, 70mpdan 687 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵𝑗) = (log‘(𝐴𝑗)))
7271, 65eqeltrd 2835 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
7363, 72syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵𝑗) ∈ ℝ)
74 peano2nn 12257 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
752stirlinglem2 46071 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7776relogcld 26589 . . . . . . . . . 10 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
78 nfcv 2899 . . . . . . . . . . 11 𝑛(𝑗 + 1)
799, 78nffv 6891 . . . . . . . . . . . 12 𝑛(𝐴‘(𝑗 + 1))
807, 79nffv 6891 . . . . . . . . . . 11 𝑛(log‘(𝐴‘(𝑗 + 1)))
81 2fveq3 6886 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
8278, 80, 81, 13fvmptf 7012 . . . . . . . . . 10 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8374, 77, 82syl2anc 584 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8483, 77eqeltrd 2835 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8562, 84syl 17 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8685adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8773, 86resubcld 11670 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8861, 87fsumrecl 15755 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8929a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈ ℝ)
9062nnred 12260 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ)
91 1red 11241 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℝ)
9290, 91readdcld 11269 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ)
9390, 92remulcld 11270 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
9490recnd 11268 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ)
95 1cnd 11235 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℂ)
9694, 95addcld 11259 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ)
9762nnne0d 12295 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0)
9874nnne0d 12295 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
9962, 98syl 17 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0)
10094, 96, 97, 99mulne0d 11894 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0)
10193, 100rereccld 12073 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
102101adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
10389, 102remulcld 11270 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
10461, 103fsumrecl 15755 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
105 eqid 2736 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖))))
106 eqid 2736 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖)) = (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖))
1072, 13, 105, 106stirlinglem10 46079 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10863, 107syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10961, 87, 103, 108fsumle 15820 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11061, 102fsumrecl 15755 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
111 1red 11241 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
112 4pos 12352 . . . . . . . . 9 0 < 4
11327, 112elrpii 13016 . . . . . . . 8 4 ∈ ℝ+
114113a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℝ+)
115 0red 11243 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
116 0lt1 11764 . . . . . . . . 9 0 < 1
117116a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
118115, 111, 117ltled 11388 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 1)
119111, 114, 118divge0d 13096 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (1 / 4))
120 eqid 2736 . . . . . . . . . 10 (ℤ𝑁) = (ℤ𝑁)
121 eluznn 12939 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℕ)
122 stirlinglem12.3 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
123122a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))))
124 simpr 484 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
125124oveq1d 7425 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1))
126124, 125oveq12d 7428 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
127126oveq2d 7426 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
128 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
129 nnre 12252 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
130 1red 11241 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℝ)
131129, 130readdcld 11269 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ)
132129, 131remulcld 11270 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ)
133 nncn 12253 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
134 1cnd 11235 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℂ)
135133, 134addcld 11259 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
136 nnne0 12279 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
137133, 135, 136, 98mulne0d 11894 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0)
138132, 137rereccld 12073 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
139123, 127, 128, 138fvmptd 6998 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
140121, 139syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
141121nnred 12260 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
142 1red 11241 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
143141, 142readdcld 11269 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ)
144141, 143remulcld 11270 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
145141recnd 11268 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℂ)
146 1cnd 11235 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℂ)
147145, 146addcld 11259 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℂ)
148121nnne0d 12295 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
149121, 98syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ≠ 0)
150145, 147, 148, 149mulne0d 11894 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0)
151144, 150rereccld 12073 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
152 seqeq1 14027 . . . . . . . . . . . . 13 (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹))
153122trireciplem 15883 . . . . . . . . . . . . . 14 seq1( + , 𝐹) ⇝ 1
154 climrel 15513 . . . . . . . . . . . . . . 15 Rel ⇝
155154releldmi 5933 . . . . . . . . . . . . . 14 (seq1( + , 𝐹) ⇝ 1 → seq1( + , 𝐹) ∈ dom ⇝ )
156153, 155mp1i 13 . . . . . . . . . . . . 13 (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝ )
157152, 156eqeltrd 2835 . . . . . . . . . . . 12 (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
158157adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
159 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ ℕ)
160 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ¬ 𝑁 = 1)
161 elnn1uz2 12946 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
162159, 161sylib 218 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
163162ord 864 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈ (ℤ‘2)))
164160, 163mpd 15 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
165 uz2m1nn 12944 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 − 1) ∈ ℕ)
167 nncn 12253 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
168167adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 ∈ ℂ)
169 1cnd 11235 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 1 ∈ ℂ)
170168, 169npcand 11603 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
171170eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 = ((𝑁 − 1) + 1))
172171seqeq1d 14030 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
173 nnuz 12900 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
174 id 22 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℕ)
175138recnd 11268 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
176139, 175eqeltrd 2835 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (𝐹𝑗) ∈ ℂ)
177176adantl 481 . . . . . . . . . . . . . . . 16 (((𝑁 − 1) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
178153a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → seq1( + , 𝐹) ⇝ 1)
179173, 174, 177, 178clim2ser 15676 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℕ → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
180179adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
181172, 180eqbrtrd 5146 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
182154releldmi 5933 . . . . . . . . . . . . 13 (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
183181, 182syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
184159, 166, 183syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
185158, 184pm2.61dan 812 . . . . . . . . . 10 (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ )
186120, 56, 140, 151, 185isumrecl 15786 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
187121nnrpd 13054 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ+)
188187rpge0d 13060 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 𝑗)
189141, 188ge0p1rpd 13086 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ+)
190187, 189rpmulcld 13072 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ+)
191118adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 1)
192142, 190, 191divge0d 13096 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1))))
193120, 56, 140, 151, 185, 192isumge0 15787 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))))
194115, 186, 110, 193leadd2dd 11857 . . . . . . . 8 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
195110recnd 11268 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
196195addridd 11440 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))))
197196eqcomd 2742 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0))
198 id 22 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
199139adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
200133adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
201 1cnd 11235 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
202200, 201addcld 11259 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℂ)
203200, 202mulcld 11260 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
204136adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0)
20598adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0)
206200, 202, 204, 205mulne0d 11894 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0)
207203, 206reccld 12015 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
208153, 155mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
209173, 120, 198, 199, 207, 208isumsplit 15861 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
210194, 197, 2093brtr4d 5156 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))))
211 1zzd 12628 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
212139adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
213175adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
214153a1i 11 . . . . . . . . 9 (⊤ → seq1( + , 𝐹) ⇝ 1)
215173, 211, 212, 213, 214isumclim 15778 . . . . . . . 8 (⊤ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1)
216215mptru 1547 . . . . . . 7 Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1
217210, 216breqtrdi 5165 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1)
218110, 111, 30, 119, 217lemul2ad 12187 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) · 1))
219 4cn 12330 . . . . . . . 8 4 ∈ ℂ
220219a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℂ)
221112a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
222221gt0ne0d 11806 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
223220, 222reccld 12015 . . . . . 6 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
224102recnd 11268 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
22561, 223, 224fsummulc2 15805 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
226223mulridd 11257 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · 1) = (1 / 4))
227218, 225, 2263brtr3d 5155 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ≤ (1 / 4))
22888, 104, 30, 109, 227letrd 11397 . . 3 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4))
22960, 228eqbrtrd 5146 . 2 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) ≤ (1 / 4))
23017, 26, 30, 229subled 11845 1 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  wne 2933   class class class wbr 5124  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  4c4 12302  cz 12593  cuz 12857  +crp 13013  ...cfz 13529  ..^cfzo 13676  seqcseq 14024  cexp 14084  !cfa 14296  csqrt 15257  cli 15505  Σcsu 15707  eceu 16083  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-dvds 16278  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343  df-log 26522  df-cxp 26523
This theorem is referenced by:  stirlinglem13  46082
  Copyright terms: Public domain W3C validator