Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem12 Structured version   Visualization version   GIF version

Theorem stirlinglem12 46062
Description: The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem12.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem12.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem12.3 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
stirlinglem12 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐹(𝑛)

Proof of Theorem stirlinglem12
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12249 . . . . 5 1 ∈ ℕ
2 stirlinglem12.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32stirlinglem2 46052 . . . . . 6 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
4 relogcl 26534 . . . . . 6 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
51, 3, 4mp2b 10 . . . . 5 (log‘(𝐴‘1)) ∈ ℝ
6 nfcv 2898 . . . . . 6 𝑛1
7 nfcv 2898 . . . . . . 7 𝑛log
8 nfmpt1 5220 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
92, 8nfcxfr 2896 . . . . . . . 8 𝑛𝐴
109, 6nffv 6885 . . . . . . 7 𝑛(𝐴‘1)
117, 10nffv 6885 . . . . . 6 𝑛(log‘(𝐴‘1))
12 2fveq3 6880 . . . . . 6 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
13 stirlinglem12.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
146, 11, 12, 13fvmptf 7006 . . . . 5 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
151, 5, 14mp2an 692 . . . 4 (𝐵‘1) = (log‘(𝐴‘1))
1615, 5eqeltri 2830 . . 3 (𝐵‘1) ∈ ℝ
1716a1i 11 . 2 (𝑁 ∈ ℕ → (𝐵‘1) ∈ ℝ)
182stirlinglem2 46052 . . . . 5 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
1918relogcld 26582 . . . 4 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
20 nfcv 2898 . . . . 5 𝑛𝑁
219, 20nffv 6885 . . . . . 6 𝑛(𝐴𝑁)
227, 21nffv 6885 . . . . 5 𝑛(log‘(𝐴𝑁))
23 2fveq3 6880 . . . . 5 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
2420, 22, 23, 13fvmptf 7006 . . . 4 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
2519, 24mpdan 687 . . 3 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
2625, 19eqeltrd 2834 . 2 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
27 4re 12322 . . . 4 4 ∈ ℝ
28 4ne0 12346 . . . 4 4 ≠ 0
2927, 28rereccli 12004 . . 3 (1 / 4) ∈ ℝ
3029a1i 11 . 2 (𝑁 ∈ ℕ → (1 / 4) ∈ ℝ)
31 fveq2 6875 . . . . 5 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
32 fveq2 6875 . . . . 5 (𝑘 = (𝑗 + 1) → (𝐵𝑘) = (𝐵‘(𝑗 + 1)))
33 fveq2 6875 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵‘1))
34 fveq2 6875 . . . . 5 (𝑘 = 𝑁 → (𝐵𝑘) = (𝐵𝑁))
35 elnnuz 12894 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
3635biimpi 216 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
37 elfznn 13568 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
382stirlinglem2 46052 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℝ+)
3937, 38syl 17 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℝ+)
4039relogcld 26582 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (log‘(𝐴𝑘)) ∈ ℝ)
41 nfcv 2898 . . . . . . . . 9 𝑛𝑘
429, 41nffv 6885 . . . . . . . . . 10 𝑛(𝐴𝑘)
437, 42nffv 6885 . . . . . . . . 9 𝑛(log‘(𝐴𝑘))
44 2fveq3 6880 . . . . . . . . 9 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
4541, 43, 44, 13fvmptf 7006 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℝ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4637, 40, 45syl2anc 584 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4746adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4839rpcnd 13051 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℂ)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
5038rpne0d 13054 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
5137, 50syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ≠ 0)
5251adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ≠ 0)
5349, 52logcld 26529 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴𝑘)) ∈ ℂ)
5447, 53eqeltrd 2834 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
5531, 32, 33, 34, 36, 54telfsumo 15816 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵𝑁)))
56 nnz 12607 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzoval 13675 . . . . . 6 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
5856, 57syl 17 . . . . 5 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
5958sumeq1d 15714 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
6055, 59eqtr3d 2772 . . 3 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
61 fzfid 13989 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
62 elfznn 13568 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ)
6362adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ)
642stirlinglem2 46052 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴𝑗) ∈ ℝ+)
6564relogcld 26582 . . . . . . . . 9 (𝑗 ∈ ℕ → (log‘(𝐴𝑗)) ∈ ℝ)
66 nfcv 2898 . . . . . . . . . 10 𝑛𝑗
679, 66nffv 6885 . . . . . . . . . . 11 𝑛(𝐴𝑗)
687, 67nffv 6885 . . . . . . . . . 10 𝑛(log‘(𝐴𝑗))
69 2fveq3 6880 . . . . . . . . . 10 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
7066, 68, 69, 13fvmptf 7006 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ (log‘(𝐴𝑗)) ∈ ℝ) → (𝐵𝑗) = (log‘(𝐴𝑗)))
7165, 70mpdan 687 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵𝑗) = (log‘(𝐴𝑗)))
7271, 65eqeltrd 2834 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
7363, 72syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵𝑗) ∈ ℝ)
74 peano2nn 12250 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
752stirlinglem2 46052 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7776relogcld 26582 . . . . . . . . . 10 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
78 nfcv 2898 . . . . . . . . . . 11 𝑛(𝑗 + 1)
799, 78nffv 6885 . . . . . . . . . . . 12 𝑛(𝐴‘(𝑗 + 1))
807, 79nffv 6885 . . . . . . . . . . 11 𝑛(log‘(𝐴‘(𝑗 + 1)))
81 2fveq3 6880 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
8278, 80, 81, 13fvmptf 7006 . . . . . . . . . 10 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8374, 77, 82syl2anc 584 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8483, 77eqeltrd 2834 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8562, 84syl 17 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8685adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8773, 86resubcld 11663 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8861, 87fsumrecl 15748 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8929a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈ ℝ)
9062nnred 12253 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ)
91 1red 11234 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℝ)
9290, 91readdcld 11262 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ)
9390, 92remulcld 11263 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
9490recnd 11261 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ)
95 1cnd 11228 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℂ)
9694, 95addcld 11252 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ)
9762nnne0d 12288 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0)
9874nnne0d 12288 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
9962, 98syl 17 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0)
10094, 96, 97, 99mulne0d 11887 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0)
10193, 100rereccld 12066 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
102101adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
10389, 102remulcld 11263 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
10461, 103fsumrecl 15748 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
105 eqid 2735 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖))))
106 eqid 2735 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖)) = (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖))
1072, 13, 105, 106stirlinglem10 46060 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10863, 107syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10961, 87, 103, 108fsumle 15813 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11061, 102fsumrecl 15748 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
111 1red 11234 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
112 4pos 12345 . . . . . . . . 9 0 < 4
11327, 112elrpii 13009 . . . . . . . 8 4 ∈ ℝ+
114113a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℝ+)
115 0red 11236 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
116 0lt1 11757 . . . . . . . . 9 0 < 1
117116a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
118115, 111, 117ltled 11381 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 1)
119111, 114, 118divge0d 13089 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (1 / 4))
120 eqid 2735 . . . . . . . . . 10 (ℤ𝑁) = (ℤ𝑁)
121 eluznn 12932 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℕ)
122 stirlinglem12.3 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
123122a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))))
124 simpr 484 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
125124oveq1d 7418 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1))
126124, 125oveq12d 7421 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
127126oveq2d 7419 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
128 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
129 nnre 12245 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
130 1red 11234 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℝ)
131129, 130readdcld 11262 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ)
132129, 131remulcld 11263 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ)
133 nncn 12246 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
134 1cnd 11228 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℂ)
135133, 134addcld 11252 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
136 nnne0 12272 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
137133, 135, 136, 98mulne0d 11887 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0)
138132, 137rereccld 12066 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
139123, 127, 128, 138fvmptd 6992 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
140121, 139syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
141121nnred 12253 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
142 1red 11234 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
143141, 142readdcld 11262 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ)
144141, 143remulcld 11263 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
145141recnd 11261 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℂ)
146 1cnd 11228 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℂ)
147145, 146addcld 11252 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℂ)
148121nnne0d 12288 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
149121, 98syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ≠ 0)
150145, 147, 148, 149mulne0d 11887 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0)
151144, 150rereccld 12066 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
152 seqeq1 14020 . . . . . . . . . . . . 13 (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹))
153122trireciplem 15876 . . . . . . . . . . . . . 14 seq1( + , 𝐹) ⇝ 1
154 climrel 15506 . . . . . . . . . . . . . . 15 Rel ⇝
155154releldmi 5928 . . . . . . . . . . . . . 14 (seq1( + , 𝐹) ⇝ 1 → seq1( + , 𝐹) ∈ dom ⇝ )
156153, 155mp1i 13 . . . . . . . . . . . . 13 (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝ )
157152, 156eqeltrd 2834 . . . . . . . . . . . 12 (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
158157adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
159 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ ℕ)
160 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ¬ 𝑁 = 1)
161 elnn1uz2 12939 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
162159, 161sylib 218 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
163162ord 864 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈ (ℤ‘2)))
164160, 163mpd 15 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
165 uz2m1nn 12937 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 − 1) ∈ ℕ)
167 nncn 12246 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
168167adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 ∈ ℂ)
169 1cnd 11228 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 1 ∈ ℂ)
170168, 169npcand 11596 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
171170eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 = ((𝑁 − 1) + 1))
172171seqeq1d 14023 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
173 nnuz 12893 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
174 id 22 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℕ)
175138recnd 11261 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
176139, 175eqeltrd 2834 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (𝐹𝑗) ∈ ℂ)
177176adantl 481 . . . . . . . . . . . . . . . 16 (((𝑁 − 1) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
178153a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → seq1( + , 𝐹) ⇝ 1)
179173, 174, 177, 178clim2ser 15669 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℕ → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
180179adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
181172, 180eqbrtrd 5141 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
182154releldmi 5928 . . . . . . . . . . . . 13 (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
183181, 182syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
184159, 166, 183syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
185158, 184pm2.61dan 812 . . . . . . . . . 10 (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ )
186120, 56, 140, 151, 185isumrecl 15779 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
187121nnrpd 13047 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ+)
188187rpge0d 13053 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 𝑗)
189141, 188ge0p1rpd 13079 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ+)
190187, 189rpmulcld 13065 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ+)
191118adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 1)
192142, 190, 191divge0d 13089 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1))))
193120, 56, 140, 151, 185, 192isumge0 15780 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))))
194115, 186, 110, 193leadd2dd 11850 . . . . . . . 8 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
195110recnd 11261 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
196195addridd 11433 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))))
197196eqcomd 2741 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0))
198 id 22 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
199139adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
200133adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
201 1cnd 11228 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
202200, 201addcld 11252 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℂ)
203200, 202mulcld 11253 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
204136adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0)
20598adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0)
206200, 202, 204, 205mulne0d 11887 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0)
207203, 206reccld 12008 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
208153, 155mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
209173, 120, 198, 199, 207, 208isumsplit 15854 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
210194, 197, 2093brtr4d 5151 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))))
211 1zzd 12621 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
212139adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
213175adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
214153a1i 11 . . . . . . . . 9 (⊤ → seq1( + , 𝐹) ⇝ 1)
215173, 211, 212, 213, 214isumclim 15771 . . . . . . . 8 (⊤ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1)
216215mptru 1547 . . . . . . 7 Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1
217210, 216breqtrdi 5160 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1)
218110, 111, 30, 119, 217lemul2ad 12180 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) · 1))
219 4cn 12323 . . . . . . . 8 4 ∈ ℂ
220219a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℂ)
221112a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
222221gt0ne0d 11799 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
223220, 222reccld 12008 . . . . . 6 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
224102recnd 11261 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
22561, 223, 224fsummulc2 15798 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
226223mulridd 11250 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · 1) = (1 / 4))
227218, 225, 2263brtr3d 5150 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ≤ (1 / 4))
22888, 104, 30, 109, 227letrd 11390 . . 3 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4))
22960, 228eqbrtrd 5141 . 2 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) ≤ (1 / 4))
23017, 26, 30, 229subled 11838 1 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2108  wne 2932   class class class wbr 5119  cmpt 5201  dom cdm 5654  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  4c4 12295  cz 12586  cuz 12850  +crp 13006  ...cfz 13522  ..^cfzo 13669  seqcseq 14017  cexp 14077  !cfa 14289  csqrt 15250  cli 15498  Σcsu 15700  eceu 16076  logclog 26513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-e 16082  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-dvds 16271  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-ulm 26336  df-log 26515  df-cxp 26516
This theorem is referenced by:  stirlinglem13  46063
  Copyright terms: Public domain W3C validator