Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem12 Structured version   Visualization version   GIF version

Theorem stirlinglem12 40812
Description: The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem12.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem12.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem12.3 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
stirlinglem12 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐹(𝑛)

Proof of Theorem stirlinglem12
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11231 . . . . 5 1 ∈ ℕ
2 stirlinglem12.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32stirlinglem2 40802 . . . . . 6 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
4 relogcl 24536 . . . . . 6 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
51, 3, 4mp2b 10 . . . . 5 (log‘(𝐴‘1)) ∈ ℝ
6 nfcv 2913 . . . . . 6 𝑛1
7 nfcv 2913 . . . . . . 7 𝑛log
8 nfmpt1 4881 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
92, 8nfcxfr 2911 . . . . . . . 8 𝑛𝐴
109, 6nffv 6337 . . . . . . 7 𝑛(𝐴‘1)
117, 10nffv 6337 . . . . . 6 𝑛(log‘(𝐴‘1))
12 fveq2 6330 . . . . . . 7 (𝑛 = 1 → (𝐴𝑛) = (𝐴‘1))
1312fveq2d 6334 . . . . . 6 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
14 stirlinglem12.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
156, 11, 13, 14fvmptf 6441 . . . . 5 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
161, 5, 15mp2an 672 . . . 4 (𝐵‘1) = (log‘(𝐴‘1))
1716, 5eqeltri 2846 . . 3 (𝐵‘1) ∈ ℝ
1817a1i 11 . 2 (𝑁 ∈ ℕ → (𝐵‘1) ∈ ℝ)
192stirlinglem2 40802 . . . . 5 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
2019relogcld 24583 . . . 4 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
21 nfcv 2913 . . . . 5 𝑛𝑁
229, 21nffv 6337 . . . . . 6 𝑛(𝐴𝑁)
237, 22nffv 6337 . . . . 5 𝑛(log‘(𝐴𝑁))
24 fveq2 6330 . . . . . 6 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
2524fveq2d 6334 . . . . 5 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
2621, 23, 25, 14fvmptf 6441 . . . 4 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
2720, 26mpdan 667 . . 3 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
2827, 20eqeltrd 2850 . 2 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
29 4re 11297 . . . 4 4 ∈ ℝ
30 4ne0 11317 . . . 4 4 ≠ 0
3129, 30rereccli 10990 . . 3 (1 / 4) ∈ ℝ
3231a1i 11 . 2 (𝑁 ∈ ℕ → (1 / 4) ∈ ℝ)
33 fveq2 6330 . . . . 5 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
34 fveq2 6330 . . . . 5 (𝑘 = (𝑗 + 1) → (𝐵𝑘) = (𝐵‘(𝑗 + 1)))
35 fveq2 6330 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵‘1))
36 fveq2 6330 . . . . 5 (𝑘 = 𝑁 → (𝐵𝑘) = (𝐵𝑁))
37 elnnuz 11924 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
3837biimpi 206 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
39 elfznn 12570 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
402stirlinglem2 40802 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℝ+)
4139, 40syl 17 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℝ+)
4241relogcld 24583 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (log‘(𝐴𝑘)) ∈ ℝ)
43 nfcv 2913 . . . . . . . . 9 𝑛𝑘
449, 43nffv 6337 . . . . . . . . . 10 𝑛(𝐴𝑘)
457, 44nffv 6337 . . . . . . . . 9 𝑛(log‘(𝐴𝑘))
46 fveq2 6330 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
4746fveq2d 6334 . . . . . . . . 9 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
4843, 45, 47, 14fvmptf 6441 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℝ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4939, 42, 48syl2anc 573 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝐵𝑘) = (log‘(𝐴𝑘)))
5049adantl 467 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) = (log‘(𝐴𝑘)))
5141rpcnd 12070 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℂ)
5251adantl 467 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
5340rpne0d 12073 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
5439, 53syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ≠ 0)
5554adantl 467 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ≠ 0)
5652, 55logcld 24531 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴𝑘)) ∈ ℂ)
5750, 56eqeltrd 2850 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
5833, 34, 35, 36, 38, 57telfsumo 14734 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵𝑁)))
59 nnz 11599 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
60 fzoval 12672 . . . . . 6 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
6159, 60syl 17 . . . . 5 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
6261sumeq1d 14632 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
6358, 62eqtr3d 2807 . . 3 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
64 fzfid 12973 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
65 elfznn 12570 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ)
6665adantl 467 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ)
672stirlinglem2 40802 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴𝑗) ∈ ℝ+)
6867relogcld 24583 . . . . . . . . 9 (𝑗 ∈ ℕ → (log‘(𝐴𝑗)) ∈ ℝ)
69 nfcv 2913 . . . . . . . . . 10 𝑛𝑗
709, 69nffv 6337 . . . . . . . . . . 11 𝑛(𝐴𝑗)
717, 70nffv 6337 . . . . . . . . . 10 𝑛(log‘(𝐴𝑗))
72 fveq2 6330 . . . . . . . . . . 11 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
7372fveq2d 6334 . . . . . . . . . 10 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
7469, 71, 73, 14fvmptf 6441 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ (log‘(𝐴𝑗)) ∈ ℝ) → (𝐵𝑗) = (log‘(𝐴𝑗)))
7568, 74mpdan 667 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵𝑗) = (log‘(𝐴𝑗)))
7675, 68eqeltrd 2850 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
7766, 76syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵𝑗) ∈ ℝ)
78 peano2nn 11232 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
792stirlinglem2 40802 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
8078, 79syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
8180relogcld 24583 . . . . . . . . . 10 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
82 nfcv 2913 . . . . . . . . . . 11 𝑛(𝑗 + 1)
839, 82nffv 6337 . . . . . . . . . . . 12 𝑛(𝐴‘(𝑗 + 1))
847, 83nffv 6337 . . . . . . . . . . 11 𝑛(log‘(𝐴‘(𝑗 + 1)))
85 fveq2 6330 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐴𝑛) = (𝐴‘(𝑗 + 1)))
8685fveq2d 6334 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
8782, 84, 86, 14fvmptf 6441 . . . . . . . . . 10 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8878, 81, 87syl2anc 573 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8988, 81eqeltrd 2850 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
9065, 89syl 17 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
9190adantl 467 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
9277, 91resubcld 10658 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
9364, 92fsumrecl 14666 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
9431a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈ ℝ)
9565nnred 11235 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ)
96 1red 10255 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℝ)
9795, 96readdcld 10269 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ)
9895, 97remulcld 10270 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
9995recnd 10268 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ)
100 1cnd 10256 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℂ)
10199, 100addcld 10259 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ)
10265nnne0d 11265 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0)
10378nnne0d 11265 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
10465, 103syl 17 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0)
10599, 101, 102, 104mulne0d 10879 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0)
10698, 105rereccld 11052 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
107106adantl 467 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
10894, 107remulcld 10270 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
10964, 108fsumrecl 14666 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
110 eqid 2771 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖))))
111 eqid 2771 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖)) = (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖))
1122, 14, 110, 111stirlinglem10 40810 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11366, 112syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11464, 92, 108, 113fsumle 14731 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11564, 107fsumrecl 14666 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
116 1red 10255 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
117 4pos 11316 . . . . . . . . 9 0 < 4
11829, 117elrpii 12031 . . . . . . . 8 4 ∈ ℝ+
119118a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℝ+)
120 0red 10241 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
121 0lt1 10750 . . . . . . . . 9 0 < 1
122121a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
123120, 116, 122ltled 10385 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 1)
124116, 119, 123divge0d 12108 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (1 / 4))
125 eqid 2771 . . . . . . . . . 10 (ℤ𝑁) = (ℤ𝑁)
126 eluznn 11959 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℕ)
127 stirlinglem12.3 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
128127a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))))
129 simpr 471 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
130129oveq1d 6806 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1))
131129, 130oveq12d 6809 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
132131oveq2d 6807 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
133 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
134 nnre 11227 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
135 1red 10255 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℝ)
136134, 135readdcld 10269 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ)
137134, 136remulcld 10270 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ)
138 nncn 11228 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
139 1cnd 10256 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℂ)
140138, 139addcld 10259 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
141 nnne0 11253 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
142138, 140, 141, 103mulne0d 10879 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0)
143137, 142rereccld 11052 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
144128, 132, 133, 143fvmptd 6428 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
145126, 144syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
146126nnred 11235 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
147 1red 10255 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
148146, 147readdcld 10269 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ)
149146, 148remulcld 10270 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
150146recnd 10268 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℂ)
151 1cnd 10256 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℂ)
152150, 151addcld 10259 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℂ)
153126nnne0d 11265 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
154126, 103syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ≠ 0)
155150, 152, 153, 154mulne0d 10879 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0)
156149, 155rereccld 11052 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
157 seqeq1 13004 . . . . . . . . . . . . 13 (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹))
158127trireciplem 14794 . . . . . . . . . . . . . 14 seq1( + , 𝐹) ⇝ 1
159 climrel 14424 . . . . . . . . . . . . . . 15 Rel ⇝
160159releldmi 5498 . . . . . . . . . . . . . 14 (seq1( + , 𝐹) ⇝ 1 → seq1( + , 𝐹) ∈ dom ⇝ )
161158, 160mp1i 13 . . . . . . . . . . . . 13 (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝ )
162157, 161eqeltrd 2850 . . . . . . . . . . . 12 (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
163162adantl 467 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
164 simpl 468 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ ℕ)
165 simpr 471 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ¬ 𝑁 = 1)
166 elnn1uz2 11966 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
167164, 166sylib 208 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
168167ord 853 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈ (ℤ‘2)))
169165, 168mpd 15 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
170 uz2m1nn 11964 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
171169, 170syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 − 1) ∈ ℕ)
172 nncn 11228 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
173172adantr 466 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 ∈ ℂ)
174 1cnd 10256 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 1 ∈ ℂ)
175173, 174npcand 10596 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
176175eqcomd 2777 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 = ((𝑁 − 1) + 1))
177176seqeq1d 13007 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
178 nnuz 11923 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
179 id 22 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℕ)
180143recnd 10268 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
181144, 180eqeltrd 2850 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (𝐹𝑗) ∈ ℂ)
182181adantl 467 . . . . . . . . . . . . . . . 16 (((𝑁 − 1) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
183158a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → seq1( + , 𝐹) ⇝ 1)
184178, 179, 182, 183clim2ser 14586 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℕ → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
185184adantl 467 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
186177, 185eqbrtrd 4808 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
187159releldmi 5498 . . . . . . . . . . . . 13 (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
188186, 187syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
189164, 171, 188syl2anc 573 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
190163, 189pm2.61dan 814 . . . . . . . . . 10 (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ )
191125, 59, 145, 156, 190isumrecl 14697 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
192126nnrpd 12066 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ+)
193192rpge0d 12072 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 𝑗)
194146, 193ge0p1rpd 12098 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ+)
195192, 194rpmulcld 12084 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ+)
196123adantr 466 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 1)
197147, 195, 196divge0d 12108 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1))))
198125, 59, 145, 156, 190, 197isumge0 14698 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))))
199120, 191, 115, 198leadd2dd 10842 . . . . . . . 8 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
200115recnd 10268 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
201200addid1d 10436 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))))
202201eqcomd 2777 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0))
203 id 22 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
204144adantl 467 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
205138adantl 467 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
206 1cnd 10256 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
207205, 206addcld 10259 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℂ)
208205, 207mulcld 10260 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
209141adantl 467 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0)
210103adantl 467 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0)
211205, 207, 209, 210mulne0d 10879 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0)
212208, 211reccld 10994 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
213158, 160mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
214178, 125, 203, 204, 212, 213isumsplit 14772 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
215199, 202, 2143brtr4d 4818 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))))
216 1zzd 11608 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
217144adantl 467 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
218180adantl 467 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
219158a1i 11 . . . . . . . . 9 (⊤ → seq1( + , 𝐹) ⇝ 1)
220178, 216, 217, 218, 219isumclim 14689 . . . . . . . 8 (⊤ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1)
221220trud 1641 . . . . . . 7 Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1
222215, 221syl6breq 4827 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1)
223115, 116, 32, 124, 222lemul2ad 11164 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) · 1))
224 4cn 11298 . . . . . . . 8 4 ∈ ℂ
225224a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℂ)
226117a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
227226gt0ne0d 10792 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
228225, 227reccld 10994 . . . . . 6 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
229107recnd 10268 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
23064, 228, 229fsummulc2 14716 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
231228mulid1d 10257 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · 1) = (1 / 4))
232223, 230, 2313brtr3d 4817 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ≤ (1 / 4))
23393, 109, 32, 114, 232letrd 10394 . . 3 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4))
23463, 233eqbrtrd 4808 . 2 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) ≤ (1 / 4))
23518, 28, 32, 234subled 10830 1 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 836   = wceq 1631  wtru 1632  wcel 2145  wne 2943   class class class wbr 4786  cmpt 4863  dom cdm 5249  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141   < clt 10274  cle 10275  cmin 10466   / cdiv 10884  cn 11220  2c2 11270  4c4 11272  cz 11577  cuz 11886  +crp 12028  ...cfz 12526  ..^cfzo 12666  seqcseq 13001  cexp 13060  !cfa 13257  csqrt 14174  cli 14416  Σcsu 14617  eceu 14992  logclog 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-xnn0 11564  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-tan 15001  df-pi 15002  df-dvds 15183  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-ulm 24344  df-log 24517  df-cxp 24518
This theorem is referenced by:  stirlinglem13  40813
  Copyright terms: Public domain W3C validator