Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem12 Structured version   Visualization version   GIF version

Theorem stirlinglem12 44316
Description: The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem12.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem12.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem12.3 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
stirlinglem12 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐹(𝑛)

Proof of Theorem stirlinglem12
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12164 . . . . 5 1 ∈ ℕ
2 stirlinglem12.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32stirlinglem2 44306 . . . . . 6 (1 ∈ ℕ → (𝐴‘1) ∈ ℝ+)
4 relogcl 25931 . . . . . 6 ((𝐴‘1) ∈ ℝ+ → (log‘(𝐴‘1)) ∈ ℝ)
51, 3, 4mp2b 10 . . . . 5 (log‘(𝐴‘1)) ∈ ℝ
6 nfcv 2907 . . . . . 6 𝑛1
7 nfcv 2907 . . . . . . 7 𝑛log
8 nfmpt1 5213 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
92, 8nfcxfr 2905 . . . . . . . 8 𝑛𝐴
109, 6nffv 6852 . . . . . . 7 𝑛(𝐴‘1)
117, 10nffv 6852 . . . . . 6 𝑛(log‘(𝐴‘1))
12 2fveq3 6847 . . . . . 6 (𝑛 = 1 → (log‘(𝐴𝑛)) = (log‘(𝐴‘1)))
13 stirlinglem12.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
146, 11, 12, 13fvmptf 6969 . . . . 5 ((1 ∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1)))
151, 5, 14mp2an 690 . . . 4 (𝐵‘1) = (log‘(𝐴‘1))
1615, 5eqeltri 2834 . . 3 (𝐵‘1) ∈ ℝ
1716a1i 11 . 2 (𝑁 ∈ ℕ → (𝐵‘1) ∈ ℝ)
182stirlinglem2 44306 . . . . 5 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
1918relogcld 25978 . . . 4 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
20 nfcv 2907 . . . . 5 𝑛𝑁
219, 20nffv 6852 . . . . . 6 𝑛(𝐴𝑁)
227, 21nffv 6852 . . . . 5 𝑛(log‘(𝐴𝑁))
23 2fveq3 6847 . . . . 5 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
2420, 22, 23, 13fvmptf 6969 . . . 4 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
2519, 24mpdan 685 . . 3 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
2625, 19eqeltrd 2838 . 2 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
27 4re 12237 . . . 4 4 ∈ ℝ
28 4ne0 12261 . . . 4 4 ≠ 0
2927, 28rereccli 11920 . . 3 (1 / 4) ∈ ℝ
3029a1i 11 . 2 (𝑁 ∈ ℕ → (1 / 4) ∈ ℝ)
31 fveq2 6842 . . . . 5 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
32 fveq2 6842 . . . . 5 (𝑘 = (𝑗 + 1) → (𝐵𝑘) = (𝐵‘(𝑗 + 1)))
33 fveq2 6842 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵‘1))
34 fveq2 6842 . . . . 5 (𝑘 = 𝑁 → (𝐵𝑘) = (𝐵𝑁))
35 elnnuz 12807 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
3635biimpi 215 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
37 elfznn 13470 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
382stirlinglem2 44306 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℝ+)
3937, 38syl 17 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℝ+)
4039relogcld 25978 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (log‘(𝐴𝑘)) ∈ ℝ)
41 nfcv 2907 . . . . . . . . 9 𝑛𝑘
429, 41nffv 6852 . . . . . . . . . 10 𝑛(𝐴𝑘)
437, 42nffv 6852 . . . . . . . . 9 𝑛(log‘(𝐴𝑘))
44 2fveq3 6847 . . . . . . . . 9 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
4541, 43, 44, 13fvmptf 6969 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℝ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4637, 40, 45syl2anc 584 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4746adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) = (log‘(𝐴𝑘)))
4839rpcnd 12959 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ∈ ℂ)
4948adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
5038rpne0d 12962 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
5137, 50syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝐴𝑘) ≠ 0)
5251adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ≠ 0)
5349, 52logcld 25926 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴𝑘)) ∈ ℂ)
5447, 53eqeltrd 2838 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
5531, 32, 33, 34, 36, 54telfsumo 15687 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵𝑁)))
56 nnz 12520 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzoval 13573 . . . . . 6 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
5856, 57syl 17 . . . . 5 (𝑁 ∈ ℕ → (1..^𝑁) = (1...(𝑁 − 1)))
5958sumeq1d 15586 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1..^𝑁)((𝐵𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
6055, 59eqtr3d 2778 . . 3 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))))
61 fzfid 13878 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
62 elfznn 13470 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ)
6362adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ)
642stirlinglem2 44306 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝐴𝑗) ∈ ℝ+)
6564relogcld 25978 . . . . . . . . 9 (𝑗 ∈ ℕ → (log‘(𝐴𝑗)) ∈ ℝ)
66 nfcv 2907 . . . . . . . . . 10 𝑛𝑗
679, 66nffv 6852 . . . . . . . . . . 11 𝑛(𝐴𝑗)
687, 67nffv 6852 . . . . . . . . . 10 𝑛(log‘(𝐴𝑗))
69 2fveq3 6847 . . . . . . . . . 10 (𝑛 = 𝑗 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑗)))
7066, 68, 69, 13fvmptf 6969 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ (log‘(𝐴𝑗)) ∈ ℝ) → (𝐵𝑗) = (log‘(𝐴𝑗)))
7165, 70mpdan 685 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵𝑗) = (log‘(𝐴𝑗)))
7271, 65eqeltrd 2838 . . . . . . 7 (𝑗 ∈ ℕ → (𝐵𝑗) ∈ ℝ)
7363, 72syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵𝑗) ∈ ℝ)
74 peano2nn 12165 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
752stirlinglem2 44306 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈ ℝ+)
7776relogcld 25978 . . . . . . . . . 10 (𝑗 ∈ ℕ → (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ)
78 nfcv 2907 . . . . . . . . . . 11 𝑛(𝑗 + 1)
799, 78nffv 6852 . . . . . . . . . . . 12 𝑛(𝐴‘(𝑗 + 1))
807, 79nffv 6852 . . . . . . . . . . 11 𝑛(log‘(𝐴‘(𝑗 + 1)))
81 2fveq3 6847 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑗 + 1))))
8278, 80, 81, 13fvmptf 6969 . . . . . . . . . 10 (((𝑗 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8374, 77, 82syl2anc 584 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1))))
8483, 77eqeltrd 2838 . . . . . . . 8 (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8562, 84syl 17 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8685adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ)
8773, 86resubcld 11583 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8861, 87fsumrecl 15619 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ)
8929a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈ ℝ)
9062nnred 12168 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ)
91 1red 11156 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℝ)
9290, 91readdcld 11184 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ)
9390, 92remulcld 11185 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
9490recnd 11183 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ)
95 1cnd 11150 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈ ℂ)
9694, 95addcld 11174 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ)
9762nnne0d 12203 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0)
9874nnne0d 12203 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0)
9962, 98syl 17 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0)
10094, 96, 97, 99mulne0d 11807 . . . . . . . 8 (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0)
10193, 100rereccld 11982 . . . . . . 7 (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
102101adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
10389, 102remulcld 11185 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
10461, 103fsumrecl 15619 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ∈ ℝ)
105 eqid 2736 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 · 𝑖) + 1)) · ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖))))
106 eqid 2736 . . . . . . 7 (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖)) = (𝑖 ∈ ℕ ↦ ((1 / (((2 · 𝑗) + 1)↑2))↑𝑖))
1072, 13, 105, 106stirlinglem10 44314 . . . . . 6 (𝑗 ∈ ℕ → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10863, 107syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
10961, 87, 103, 108fsumle 15684 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
11061, 102fsumrecl 15619 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
111 1red 11156 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℝ)
112 4pos 12260 . . . . . . . . 9 0 < 4
11327, 112elrpii 12918 . . . . . . . 8 4 ∈ ℝ+
114113a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℝ+)
115 0red 11158 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
116 0lt1 11677 . . . . . . . . 9 0 < 1
117116a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
118115, 111, 117ltled 11303 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 1)
119111, 114, 118divge0d 12997 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (1 / 4))
120 eqid 2736 . . . . . . . . . 10 (ℤ𝑁) = (ℤ𝑁)
121 eluznn 12843 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℕ)
122 stirlinglem12.3 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
123122a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))))
124 simpr 485 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗)
125124oveq1d 7372 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1))
126124, 125oveq12d 7375 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
127126oveq2d 7373 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
128 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
129 nnre 12160 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
130 1red 11156 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℝ)
131129, 130readdcld 11184 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℝ)
132129, 131remulcld 11185 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ)
133 nncn 12161 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
134 1cnd 11150 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 1 ∈ ℂ)
135133, 134addcld 11174 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℂ)
136 nnne0 12187 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
137133, 135, 136, 98mulne0d 11807 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0)
138132, 137rereccld 11982 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
139123, 127, 128, 138fvmptd 6955 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
140121, 139syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
141121nnred 12168 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
142 1red 11156 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
143141, 142readdcld 11184 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ)
144141, 143remulcld 11185 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ)
145141recnd 11183 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℂ)
146 1cnd 11150 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 1 ∈ ℂ)
147145, 146addcld 11174 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℂ)
148121nnne0d 12203 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
149121, 98syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ≠ 0)
150145, 147, 148, 149mulne0d 11807 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0)
151144, 150rereccld 11982 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
152 seqeq1 13909 . . . . . . . . . . . . 13 (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹))
153122trireciplem 15747 . . . . . . . . . . . . . 14 seq1( + , 𝐹) ⇝ 1
154 climrel 15374 . . . . . . . . . . . . . . 15 Rel ⇝
155154releldmi 5903 . . . . . . . . . . . . . 14 (seq1( + , 𝐹) ⇝ 1 → seq1( + , 𝐹) ∈ dom ⇝ )
156153, 155mp1i 13 . . . . . . . . . . . . 13 (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝ )
157152, 156eqeltrd 2838 . . . . . . . . . . . 12 (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
158157adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
159 simpl 483 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ ℕ)
160 simpr 485 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ¬ 𝑁 = 1)
161 elnn1uz2 12850 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
162159, 161sylib 217 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
163162ord 862 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈ (ℤ‘2)))
164160, 163mpd 15 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
165 uz2m1nn 12848 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (𝑁 − 1) ∈ ℕ)
167 nncn 12161 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
168167adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 ∈ ℂ)
169 1cnd 11150 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 1 ∈ ℂ)
170168, 169npcand 11516 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
171170eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → 𝑁 = ((𝑁 − 1) + 1))
172171seqeq1d 13912 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
173 nnuz 12806 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
174 id 22 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℕ)
175138recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
176139, 175eqeltrd 2838 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (𝐹𝑗) ∈ ℂ)
177176adantl 482 . . . . . . . . . . . . . . . 16 (((𝑁 − 1) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
178153a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ → seq1( + , 𝐹) ⇝ 1)
179173, 174, 177, 178clim2ser 15539 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℕ → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
180179adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq((𝑁 − 1) + 1)( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
181172, 180eqbrtrd 5127 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))))
182154releldmi 5903 . . . . . . . . . . . . 13 (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
183181, 182syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
184159, 166, 183syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
185158, 184pm2.61dan 811 . . . . . . . . . 10 (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ )
186120, 56, 140, 151, 185isumrecl 15650 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
187121nnrpd 12955 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ+)
188187rpge0d 12961 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 𝑗)
189141, 188ge0p1rpd 12987 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 + 1) ∈ ℝ+)
190187, 189rpmulcld 12973 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ+)
191118adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ 1)
192142, 190, 191divge0d 12997 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1))))
193120, 56, 140, 151, 185, 192isumge0 15651 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1))))
194115, 186, 110, 193leadd2dd 11770 . . . . . . . 8 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
195110recnd 11183 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
196195addid1d 11355 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))))
197196eqcomd 2742 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0))
198 id 22 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
199139adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
200133adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
201 1cnd 11150 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
202200, 201addcld 11174 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℂ)
203200, 202mulcld 11175 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
204136adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0)
20598adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0)
206200, 202, 204, 205mulne0d 11807 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0)
207203, 206reccld 11924 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
208153, 155mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
209173, 120, 198, 199, 207, 208isumsplit 15725 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ𝑁)(1 / (𝑗 · (𝑗 + 1)))))
210194, 197, 2093brtr4d 5137 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))))
211 1zzd 12534 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
212139adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
213175adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
214153a1i 11 . . . . . . . . 9 (⊤ → seq1( + , 𝐹) ⇝ 1)
215173, 211, 212, 213, 214isumclim 15642 . . . . . . . 8 (⊤ → Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1)
216215mptru 1548 . . . . . . 7 Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1))) = 1
217210, 216breqtrdi 5146 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1)
218110, 111, 30, 119, 217lemul2ad 12095 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) · 1))
219 4cn 12238 . . . . . . . 8 4 ∈ ℂ
220219a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 4 ∈ ℂ)
221112a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
222221gt0ne0d 11719 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
223220, 222reccld 11924 . . . . . 6 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
224102recnd 11183 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
22561, 223, 224fsummulc2 15669 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))))
226223mulid1d 11172 . . . . 5 (𝑁 ∈ ℕ → ((1 / 4) · 1) = (1 / 4))
227218, 225, 2263brtr3d 5136 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1)))) ≤ (1 / 4))
22888, 104, 30, 109, 227letrd 11312 . . 3 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4))
22960, 228eqbrtrd 5127 . 2 (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵𝑁)) ≤ (1 / 4))
23017, 26, 30, 229subled 11758 1 (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wtru 1542  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  ..^cfzo 13567  seqcseq 13906  cexp 13967  !cfa 14173  csqrt 15118  cli 15366  Σcsu 15570  eceu 15945  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913
This theorem is referenced by:  stirlinglem13  44317
  Copyright terms: Public domain W3C validator