| Step | Hyp | Ref
| Expression |
| 1 | | 1nn 12256 |
. . . . 5
⊢ 1 ∈
ℕ |
| 2 | | stirlinglem12.1 |
. . . . . . 7
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
| 3 | 2 | stirlinglem2 46071 |
. . . . . 6
⊢ (1 ∈
ℕ → (𝐴‘1)
∈ ℝ+) |
| 4 | | relogcl 26541 |
. . . . . 6
⊢ ((𝐴‘1) ∈
ℝ+ → (log‘(𝐴‘1)) ∈ ℝ) |
| 5 | 1, 3, 4 | mp2b 10 |
. . . . 5
⊢
(log‘(𝐴‘1)) ∈ ℝ |
| 6 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑛1 |
| 7 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑛log |
| 8 | | nfmpt1 5225 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
| 9 | 2, 8 | nfcxfr 2897 |
. . . . . . . 8
⊢
Ⅎ𝑛𝐴 |
| 10 | 9, 6 | nffv 6891 |
. . . . . . 7
⊢
Ⅎ𝑛(𝐴‘1) |
| 11 | 7, 10 | nffv 6891 |
. . . . . 6
⊢
Ⅎ𝑛(log‘(𝐴‘1)) |
| 12 | | 2fveq3 6886 |
. . . . . 6
⊢ (𝑛 = 1 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘1))) |
| 13 | | stirlinglem12.2 |
. . . . . 6
⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) |
| 14 | 6, 11, 12, 13 | fvmptf 7012 |
. . . . 5
⊢ ((1
∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1))) |
| 15 | 1, 5, 14 | mp2an 692 |
. . . 4
⊢ (𝐵‘1) = (log‘(𝐴‘1)) |
| 16 | 15, 5 | eqeltri 2831 |
. . 3
⊢ (𝐵‘1) ∈
ℝ |
| 17 | 16 | a1i 11 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐵‘1) ∈
ℝ) |
| 18 | 2 | stirlinglem2 46071 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐴‘𝑁) ∈
ℝ+) |
| 19 | 18 | relogcld 26589 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(log‘(𝐴‘𝑁)) ∈
ℝ) |
| 20 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑛𝑁 |
| 21 | 9, 20 | nffv 6891 |
. . . . . 6
⊢
Ⅎ𝑛(𝐴‘𝑁) |
| 22 | 7, 21 | nffv 6891 |
. . . . 5
⊢
Ⅎ𝑛(log‘(𝐴‘𝑁)) |
| 23 | | 2fveq3 6886 |
. . . . 5
⊢ (𝑛 = 𝑁 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑁))) |
| 24 | 20, 22, 23, 13 | fvmptf 7012 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧
(log‘(𝐴‘𝑁)) ∈ ℝ) → (𝐵‘𝑁) = (log‘(𝐴‘𝑁))) |
| 25 | 19, 24 | mpdan 687 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) = (log‘(𝐴‘𝑁))) |
| 26 | 25, 19 | eqeltrd 2835 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) ∈ ℝ) |
| 27 | | 4re 12329 |
. . . 4
⊢ 4 ∈
ℝ |
| 28 | | 4ne0 12353 |
. . . 4
⊢ 4 ≠
0 |
| 29 | 27, 28 | rereccli 12011 |
. . 3
⊢ (1 / 4)
∈ ℝ |
| 30 | 29 | a1i 11 |
. 2
⊢ (𝑁 ∈ ℕ → (1 / 4)
∈ ℝ) |
| 31 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐵‘𝑘) = (𝐵‘𝑗)) |
| 32 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (𝐵‘𝑘) = (𝐵‘(𝑗 + 1))) |
| 33 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 1 → (𝐵‘𝑘) = (𝐵‘1)) |
| 34 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝐵‘𝑘) = (𝐵‘𝑁)) |
| 35 | | elnnuz 12901 |
. . . . . 6
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| 36 | 35 | biimpi 216 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
| 37 | | elfznn 13575 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
| 38 | 2 | stirlinglem2 46071 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) ∈
ℝ+) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → (𝐴‘𝑘) ∈
ℝ+) |
| 40 | 39 | relogcld 26589 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (log‘(𝐴‘𝑘)) ∈ ℝ) |
| 41 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑘 |
| 42 | 9, 41 | nffv 6891 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝐴‘𝑘) |
| 43 | 7, 42 | nffv 6891 |
. . . . . . . . 9
⊢
Ⅎ𝑛(log‘(𝐴‘𝑘)) |
| 44 | | 2fveq3 6886 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑘))) |
| 45 | 41, 43, 44, 13 | fvmptf 7012 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
(log‘(𝐴‘𝑘)) ∈ ℝ) → (𝐵‘𝑘) = (log‘(𝐴‘𝑘))) |
| 46 | 37, 40, 45 | syl2anc 584 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑁) → (𝐵‘𝑘) = (log‘(𝐴‘𝑘))) |
| 47 | 46 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵‘𝑘) = (log‘(𝐴‘𝑘))) |
| 48 | 39 | rpcnd 13058 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (𝐴‘𝑘) ∈ ℂ) |
| 49 | 48 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 50 | 38 | rpne0d 13061 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) ≠ 0) |
| 51 | 37, 50 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (𝐴‘𝑘) ≠ 0) |
| 52 | 51 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ≠ 0) |
| 53 | 49, 52 | logcld 26536 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴‘𝑘)) ∈ ℂ) |
| 54 | 47, 53 | eqeltrd 2835 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵‘𝑘) ∈ ℂ) |
| 55 | 31, 32, 33, 34, 36, 54 | telfsumo 15823 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1..^𝑁)((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵‘𝑁))) |
| 56 | | nnz 12614 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 57 | | fzoval 13682 |
. . . . . 6
⊢ (𝑁 ∈ ℤ →
(1..^𝑁) = (1...(𝑁 − 1))) |
| 58 | 56, 57 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(1..^𝑁) = (1...(𝑁 − 1))) |
| 59 | 58 | sumeq1d 15721 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1..^𝑁)((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1)))) |
| 60 | 55, 59 | eqtr3d 2773 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵‘𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1)))) |
| 61 | | fzfid 13996 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(1...(𝑁 − 1)) ∈
Fin) |
| 62 | | elfznn 13575 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ) |
| 63 | 62 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ) |
| 64 | 2 | stirlinglem2 46071 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝐴‘𝑗) ∈
ℝ+) |
| 65 | 64 | relogcld 26589 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ →
(log‘(𝐴‘𝑗)) ∈
ℝ) |
| 66 | | nfcv 2899 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑗 |
| 67 | 9, 66 | nffv 6891 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝐴‘𝑗) |
| 68 | 7, 67 | nffv 6891 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(log‘(𝐴‘𝑗)) |
| 69 | | 2fveq3 6886 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑗))) |
| 70 | 66, 68, 69, 13 | fvmptf 7012 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ ∧
(log‘(𝐴‘𝑗)) ∈ ℝ) → (𝐵‘𝑗) = (log‘(𝐴‘𝑗))) |
| 71 | 65, 70 | mpdan 687 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (𝐵‘𝑗) = (log‘(𝐴‘𝑗))) |
| 72 | 71, 65 | eqeltrd 2835 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → (𝐵‘𝑗) ∈ ℝ) |
| 73 | 63, 72 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘𝑗) ∈ ℝ) |
| 74 | | peano2nn 12257 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
| 75 | 2 | stirlinglem2 46071 |
. . . . . . . . . . . 12
⊢ ((𝑗 + 1) ∈ ℕ →
(𝐴‘(𝑗 + 1)) ∈
ℝ+) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈
ℝ+) |
| 77 | 76 | relogcld 26589 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ →
(log‘(𝐴‘(𝑗 + 1))) ∈
ℝ) |
| 78 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑗 + 1) |
| 79 | 9, 78 | nffv 6891 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝐴‘(𝑗 + 1)) |
| 80 | 7, 79 | nffv 6891 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(log‘(𝐴‘(𝑗 + 1))) |
| 81 | | 2fveq3 6886 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘(𝑗 + 1)))) |
| 82 | 78, 80, 81, 13 | fvmptf 7012 |
. . . . . . . . . 10
⊢ (((𝑗 + 1) ∈ ℕ ∧
(log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) →
(𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1)))) |
| 83 | 74, 77, 82 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1)))) |
| 84 | 83, 77 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 85 | 62, 84 | syl 17 |
. . . . . . 7
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 86 | 85 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 87 | 73, 86 | resubcld 11670 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ) |
| 88 | 61, 87 | fsumrecl 15755 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ) |
| 89 | 29 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈
ℝ) |
| 90 | 62 | nnred 12260 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ) |
| 91 | | 1red 11241 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈
ℝ) |
| 92 | 90, 91 | readdcld 11269 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ) |
| 93 | 90, 92 | remulcld 11270 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ) |
| 94 | 90 | recnd 11268 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ) |
| 95 | | 1cnd 11235 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈
ℂ) |
| 96 | 94, 95 | addcld 11259 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ) |
| 97 | 62 | nnne0d 12295 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0) |
| 98 | 74 | nnne0d 12295 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0) |
| 99 | 62, 98 | syl 17 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0) |
| 100 | 94, 96, 97, 99 | mulne0d 11894 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 101 | 93, 100 | rereccld 12073 |
. . . . . . 7
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 102 | 101 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 103 | 89, 102 | remulcld 11270 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 /
(𝑗 · (𝑗 + 1)))) ∈
ℝ) |
| 104 | 61, 103 | fsumrecl 15755 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1
/ (𝑗 · (𝑗 + 1)))) ∈
ℝ) |
| 105 | | eqid 2736 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ ((1 /
((2 · 𝑖) + 1))
· ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 ·
𝑖) + 1)) · ((1 / ((2
· 𝑗) + 1))↑(2
· 𝑖)))) |
| 106 | | eqid 2736 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ ((1 /
(((2 · 𝑗) +
1)↑2))↑𝑖)) =
(𝑖 ∈ ℕ ↦
((1 / (((2 · 𝑗) +
1)↑2))↑𝑖)) |
| 107 | 2, 13, 105, 106 | stirlinglem10 46079 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → ((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 108 | 63, 107 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 109 | 61, 87, 103, 108 | fsumle 15820 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 110 | 61, 102 | fsumrecl 15755 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 111 | | 1red 11241 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ∈
ℝ) |
| 112 | | 4pos 12352 |
. . . . . . . . 9
⊢ 0 <
4 |
| 113 | 27, 112 | elrpii 13016 |
. . . . . . . 8
⊢ 4 ∈
ℝ+ |
| 114 | 113 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 4 ∈
ℝ+) |
| 115 | | 0red 11243 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 ∈
ℝ) |
| 116 | | 0lt1 11764 |
. . . . . . . . 9
⊢ 0 <
1 |
| 117 | 116 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
1) |
| 118 | 115, 111,
117 | ltled 11388 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 0 ≤
1) |
| 119 | 111, 114,
118 | divge0d 13096 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 0 ≤ (1
/ 4)) |
| 120 | | eqid 2736 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
| 121 | | eluznn 12939 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℕ) |
| 122 | | stirlinglem12.3 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) |
| 123 | 122 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) |
| 124 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗) |
| 125 | 124 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1)) |
| 126 | 124, 125 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1))) |
| 127 | 126 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1)))) |
| 128 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
| 129 | | nnre 12252 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
| 130 | | 1red 11241 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 1 ∈
ℝ) |
| 131 | 129, 130 | readdcld 11269 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℝ) |
| 132 | 129, 131 | remulcld 11270 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ) |
| 133 | | nncn 12253 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
| 134 | | 1cnd 11235 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 1 ∈
ℂ) |
| 135 | 133, 134 | addcld 11259 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℂ) |
| 136 | | nnne0 12279 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ≠ 0) |
| 137 | 133, 135,
136, 98 | mulne0d 11894 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 138 | 132, 137 | rereccld 12073 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (1 /
(𝑗 · (𝑗 + 1))) ∈
ℝ) |
| 139 | 123, 127,
128, 138 | fvmptd 6998 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 140 | 121, 139 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 141 | 121 | nnred 12260 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℝ) |
| 142 | | 1red 11241 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 1 ∈ ℝ) |
| 143 | 141, 142 | readdcld 11269 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ∈ ℝ) |
| 144 | 141, 143 | remulcld 11270 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ) |
| 145 | 141 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℂ) |
| 146 | | 1cnd 11235 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 1 ∈ ℂ) |
| 147 | 145, 146 | addcld 11259 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ∈ ℂ) |
| 148 | 121 | nnne0d 12295 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ≠ 0) |
| 149 | 121, 98 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ≠ 0) |
| 150 | 145, 147,
148, 149 | mulne0d 11894 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 151 | 144, 150 | rereccld 12073 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 152 | | seqeq1 14027 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹)) |
| 153 | 122 | trireciplem 15883 |
. . . . . . . . . . . . . 14
⊢ seq1( + ,
𝐹) ⇝
1 |
| 154 | | climrel 15513 |
. . . . . . . . . . . . . . 15
⊢ Rel
⇝ |
| 155 | 154 | releldmi 5933 |
. . . . . . . . . . . . . 14
⊢ (seq1( +
, 𝐹) ⇝ 1 → seq1(
+ , 𝐹) ∈ dom ⇝
) |
| 156 | 153, 155 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝
) |
| 157 | 152, 156 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 158 | 157 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 159 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → 𝑁 ∈
ℕ) |
| 160 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → ¬ 𝑁 = 1) |
| 161 | | elnn1uz2 12946 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈
(ℤ≥‘2))) |
| 162 | 159, 161 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈
(ℤ≥‘2))) |
| 163 | 162 | ord 864 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈
(ℤ≥‘2))) |
| 164 | 160, 163 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → 𝑁 ∈
(ℤ≥‘2)) |
| 165 | | uz2m1nn 12944 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
| 166 | 164, 165 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → (𝑁 − 1) ∈
ℕ) |
| 167 | | nncn 12253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 168 | 167 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ 𝑁 ∈
ℂ) |
| 169 | | 1cnd 11235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ 1 ∈ ℂ) |
| 170 | 168, 169 | npcand 11603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ ((𝑁 − 1) + 1)
= 𝑁) |
| 171 | 170 | eqcomd 2742 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ 𝑁 = ((𝑁 − 1) +
1)) |
| 172 | 171 | seqeq1d 14030 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹)) |
| 173 | | nnuz 12900 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 174 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈ ℕ
→ (𝑁 − 1) ∈
ℕ) |
| 175 | 138 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → (1 /
(𝑗 · (𝑗 + 1))) ∈
ℂ) |
| 176 | 139, 175 | eqeltrd 2835 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) ∈ ℂ) |
| 177 | 176 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 − 1) ∈ ℕ ∧
𝑗 ∈ ℕ) →
(𝐹‘𝑗) ∈ ℂ) |
| 178 | 153 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈ ℕ
→ seq1( + , 𝐹) ⇝
1) |
| 179 | 173, 174,
177, 178 | clim2ser 15676 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈ ℕ
→ seq((𝑁 − 1) +
1)( + , 𝐹) ⇝ (1
− (seq1( + , 𝐹)‘(𝑁 − 1)))) |
| 180 | 179 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq((𝑁 − 1) +
1)( + , 𝐹) ⇝ (1
− (seq1( + , 𝐹)‘(𝑁 − 1)))) |
| 181 | 172, 180 | eqbrtrd 5146 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + ,
𝐹)‘(𝑁 − 1)))) |
| 182 | 154 | releldmi 5933 |
. . . . . . . . . . . . 13
⊢ (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 183 | 181, 182 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq𝑁( + , 𝐹) ∈ dom ⇝
) |
| 184 | 159, 166,
183 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 185 | 158, 184 | pm2.61dan 812 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 186 | 120, 56, 140, 151, 185 | isumrecl 15786 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈
(ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 187 | 121 | nnrpd 13054 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℝ+) |
| 188 | 187 | rpge0d 13060 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ≤ 𝑗) |
| 189 | 141, 188 | ge0p1rpd 13086 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ∈
ℝ+) |
| 190 | 187, 189 | rpmulcld 13072 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 · (𝑗 + 1)) ∈
ℝ+) |
| 191 | 118 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ≤ 1) |
| 192 | 142, 190,
191 | divge0d 13096 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1)))) |
| 193 | 120, 56, 140, 151, 185, 192 | isumge0 15787 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 ≤
Σ𝑗 ∈
(ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1)))) |
| 194 | 115, 186,
110, 193 | leadd2dd 11857 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1))))) |
| 195 | 110 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 196 | 195 | addridd 11440 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) |
| 197 | 196 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0)) |
| 198 | | id 22 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 199 | 139 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 200 | 133 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℂ) |
| 201 | | 1cnd 11235 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈
ℂ) |
| 202 | 200, 201 | addcld 11259 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℂ) |
| 203 | 200, 202 | mulcld 11260 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ) |
| 204 | 136 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0) |
| 205 | 98 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0) |
| 206 | 200, 202,
204, 205 | mulne0d 11894 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 207 | 203, 206 | reccld 12015 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 /
(𝑗 · (𝑗 + 1))) ∈
ℂ) |
| 208 | 153, 155 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → seq1( + ,
𝐹) ∈ dom ⇝
) |
| 209 | 173, 120,
198, 199, 207, 208 | isumsplit 15861 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ ℕ (1
/ (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1))))) |
| 210 | 194, 197,
209 | 3brtr4d 5156 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1)))) |
| 211 | | 1zzd 12628 |
. . . . . . . . 9
⊢ (⊤
→ 1 ∈ ℤ) |
| 212 | 139 | adantl 481 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑗
∈ ℕ) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 213 | 175 | adantl 481 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑗
∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 214 | 153 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ seq1( + , 𝐹) ⇝
1) |
| 215 | 173, 211,
212, 213, 214 | isumclim 15778 |
. . . . . . . 8
⊢ (⊤
→ Σ𝑗 ∈
ℕ (1 / (𝑗 ·
(𝑗 + 1))) =
1) |
| 216 | 215 | mptru 1547 |
. . . . . . 7
⊢
Σ𝑗 ∈
ℕ (1 / (𝑗 ·
(𝑗 + 1))) =
1 |
| 217 | 210, 216 | breqtrdi 5165 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1) |
| 218 | 110, 111,
30, 119, 217 | lemul2ad 12187 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / 4)
· Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) ·
1)) |
| 219 | | 4cn 12330 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
| 220 | 219 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 4 ∈
ℂ) |
| 221 | 112 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
4) |
| 222 | 221 | gt0ne0d 11806 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 4 ≠
0) |
| 223 | 220, 222 | reccld 12015 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 / 4)
∈ ℂ) |
| 224 | 102 | recnd 11268 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 225 | 61, 223, 224 | fsummulc2 15805 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / 4)
· Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 226 | 223 | mulridd 11257 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / 4)
· 1) = (1 / 4)) |
| 227 | 218, 225,
226 | 3brtr3d 5155 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1
/ (𝑗 · (𝑗 + 1)))) ≤ (1 /
4)) |
| 228 | 88, 104, 30, 109, 227 | letrd 11397 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4)) |
| 229 | 60, 228 | eqbrtrd 5146 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵‘𝑁)) ≤ (1 / 4)) |
| 230 | 17, 26, 30, 229 | subled 11845 |
1
⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤
(𝐵‘𝑁)) |