MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftlub Structured version   Visualization version   GIF version

Theorem eftlub 16018
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eftl.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
eftl.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
eftl.3 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
eftl.4 (𝜑𝑀 ∈ ℕ)
eftl.5 (𝜑𝐴 ∈ ℂ)
eftl.6 (𝜑 → (abs‘𝐴) ≤ 1)
Assertion
Ref Expression
eftlub (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑘,𝑛)

Proof of Theorem eftlub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eftl.5 . . . 4 (𝜑𝐴 ∈ ℂ)
2 eftl.4 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnnn0d 12445 . . . 4 (𝜑𝑀 ∈ ℕ0)
4 eftl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
54eftlcl 16016 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
61, 3, 5syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
76abscld 15346 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ∈ ℝ)
81abscld 15346 . . 3 (𝜑 → (abs‘𝐴) ∈ ℝ)
9 eftl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
109reeftlcl 16017 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
118, 3, 10syl2anc 584 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
128, 3reexpcld 14070 . . 3 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℝ)
13 peano2nn0 12424 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
143, 13syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℕ0)
1514nn0red 12446 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ)
163faccld 14191 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℕ)
1716, 2nnmulcld 12181 . . . 4 (𝜑 → ((!‘𝑀) · 𝑀) ∈ ℕ)
1815, 17nndivred 12182 . . 3 (𝜑 → ((𝑀 + 1) / ((!‘𝑀) · 𝑀)) ∈ ℝ)
1912, 18remulcld 11145 . 2 (𝜑 → (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ ℝ)
20 eqid 2729 . . 3 (ℤ𝑀) = (ℤ𝑀)
212nnzd 12498 . . . 4 (𝜑𝑀 ∈ ℤ)
22 eqidd 2730 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
23 eluznn0 12818 . . . . . 6 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
243, 23sylan 580 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
254eftval 15983 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2625adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
27 eftcl 15980 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
281, 27sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2926, 28eqeltrd 2828 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3024, 29syldan 591 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
314eftlcvg 16015 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
321, 3, 31syl2anc 584 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3320, 21, 22, 30, 32isumclim2 15665 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘))
34 eqidd 2730 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐺𝑘))
359eftval 15983 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3635adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
37 reeftcl 15981 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
388, 37sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
3936, 38eqeltrd 2828 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4024, 39syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4140recnd 11143 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
428recnd 11143 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
439eftlcvg 16015 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4442, 3, 43syl2anc 584 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4520, 21, 34, 41, 44isumclim2 15665 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
46 eftabs 15982 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
471, 46sylan 580 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4826fveq2d 6826 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
4947, 48, 363eqtr4rd 2775 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5024, 49syldan 591 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5120, 33, 45, 21, 30, 50iserabs 15722 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
52 nn0uz 12777 . . . 4 0 = (ℤ‘0)
53 0zd 12483 . . . 4 (𝜑 → 0 ∈ ℤ)
542nncnd 12144 . . . . 5 (𝜑𝑀 ∈ ℂ)
55 nn0cn 12394 . . . . 5 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
56 nn0ex 12390 . . . . . . . 8 0 ∈ V
5756mptex 7159 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) ∈ V
589, 57eqeltri 2824 . . . . . 6 𝐺 ∈ V
5958shftval4 14984 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
6054, 55, 59syl2an 596 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
61 nn0addcl 12419 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
623, 61sylan 580 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
639eftval 15983 . . . . . 6 ((𝑀 + 𝑗) ∈ ℕ0 → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
6462, 63syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
658adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
66 reeftcl 15981 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (𝑀 + 𝑗) ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6765, 62, 66syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6864, 67eqeltrd 2828 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ∈ ℝ)
69 oveq2 7357 . . . . . . 7 (𝑛 = 𝑗 → ((1 / (𝑀 + 1))↑𝑛) = ((1 / (𝑀 + 1))↑𝑗))
7069oveq2d 7365 . . . . . 6 (𝑛 = 𝑗 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
71 eftl.3 . . . . . 6 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
72 ovex 7382 . . . . . 6 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ V
7370, 71, 72fvmpt 6930 . . . . 5 (𝑗 ∈ ℕ0 → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7473adantl 481 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7512, 16nndivred 12182 . . . . . 6 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
7675adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
772peano2nnd 12145 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℕ)
7877nnrecred 12179 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
79 reexpcl 13985 . . . . . 6 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8078, 79sylan 580 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8176, 80remulcld 11145 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ)
8265, 62reexpcld 14070 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ)
8312adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℝ)
8462faccld 14191 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8584nnred 12143 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℝ)
8685, 81remulcld 11145 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))) ∈ ℝ)
873adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑀 ∈ ℕ0)
88 uzid 12750 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
8921, 88syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
90 uzaddcl 12805 . . . . . . . . 9 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
9189, 90sylan 580 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
921absge0d 15354 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐴))
9392adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
94 eftl.6 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ≤ 1)
9594adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ≤ 1)
9665, 87, 91, 93, 95leexp2rd 14162 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((abs‘𝐴)↑𝑀))
9716adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℕ)
98 nnexpcl 13981 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
9977, 98sylan 580 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10097, 99nnmulcld 12181 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℕ)
101100nnred 12143 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ)
1028, 3, 92expge0d 14071 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((abs‘𝐴)↑𝑀))
10312, 102jca 511 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
104103adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
105 faclbnd6 14206 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
1063, 105sylan 580 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
107 lemul1a 11978 . . . . . . . . . 10 (((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ ∧ (!‘(𝑀 + 𝑗)) ∈ ℝ ∧ (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀))) ∧ ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗))) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
108101, 85, 104, 106, 107syl31anc 1375 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
10985, 83remulcld 11145 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ∈ ℝ)
110100nnrpd 12935 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ+)
11183, 109, 110lemuldiv2d 12987 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ↔ ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
112108, 111mpbid 232 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
11384nncnd 12144 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℂ)
11412recnd 11143 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℂ)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℂ)
116100nncnd 12144 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℂ)
117100nnne0d 12178 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≠ 0)
118113, 115, 116, 117divassd 11935 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
11977nncnd 12144 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ ℂ)
120119adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℂ)
12177adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ)
122121nnne0d 12178 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ≠ 0)
123 nn0z 12496 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
124123adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
125120, 122, 124exprecd 14061 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) = (1 / ((𝑀 + 1)↑𝑗)))
126125oveq2d 7365 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
12775recnd 11143 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
128127adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
12999nncnd 12144 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℂ)
13099nnne0d 12178 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ≠ 0)
131128, 129, 130divrecd 11903 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
13216nncnd 12144 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ∈ ℂ)
133132adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℂ)
134 facne0 14193 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (!‘𝑀) ≠ 0)
1353, 134syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ≠ 0)
136135adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ≠ 0)
137115, 133, 129, 136, 130divdiv1d 11931 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
138126, 131, 1373eqtr2rd 2771 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
139138oveq2d 7365 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
140118, 139eqtrd 2764 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
141112, 140breqtrd 5118 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14282, 83, 86, 96, 141letrd 11273 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14384nngt0d 12177 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 < (!‘(𝑀 + 𝑗)))
144 ledivmul 12001 . . . . . . 7 ((((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ ∧ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ ∧ ((!‘(𝑀 + 𝑗)) ∈ ℝ ∧ 0 < (!‘(𝑀 + 𝑗)))) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
14582, 81, 85, 143, 144syl112anc 1376 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
146142, 145mpbird 257 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
14764, 146eqbrtrd 5114 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
148 0z 12482 . . . . . 6 0 ∈ ℤ
14921znegcld 12582 . . . . . 6 (𝜑 → -𝑀 ∈ ℤ)
15058seqshft 14992 . . . . . 6 ((0 ∈ ℤ ∧ -𝑀 ∈ ℤ) → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
151148, 149, 150sylancr 587 . . . . 5 (𝜑 → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
152 0cn 11107 . . . . . . . . . . . 12 0 ∈ ℂ
153 subneg 11413 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 − -𝑀) = (0 + 𝑀))
154152, 153mpan 690 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 − -𝑀) = (0 + 𝑀))
155 addlid 11299 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
156154, 155eqtrd 2764 . . . . . . . . . 10 (𝑀 ∈ ℂ → (0 − -𝑀) = 𝑀)
15754, 156syl 17 . . . . . . . . 9 (𝜑 → (0 − -𝑀) = 𝑀)
158157seqeq1d 13914 . . . . . . . 8 (𝜑 → seq(0 − -𝑀)( + , 𝐺) = seq𝑀( + , 𝐺))
159158, 45eqbrtrd 5114 . . . . . . 7 (𝜑 → seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
160 seqex 13910 . . . . . . . 8 seq(0 − -𝑀)( + , 𝐺) ∈ V
161 climshft 15483 . . . . . . . 8 ((-𝑀 ∈ ℤ ∧ seq(0 − -𝑀)( + , 𝐺) ∈ V) → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
162149, 160, 161sylancl 586 . . . . . . 7 (𝜑 → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
163159, 162mpbird 257 . . . . . 6 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
164 ovex 7382 . . . . . . 7 (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V
165 sumex 15595 . . . . . . 7 Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ V
166164, 165breldm 5851 . . . . . 6 ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
167163, 166syl 17 . . . . 5 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
168151, 167eqeltrd 2828 . . . 4 (𝜑 → seq0( + , (𝐺 shift -𝑀)) ∈ dom ⇝ )
1692nnge1d 12176 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
170 1nn 12139 . . . . . . . . . . 11 1 ∈ ℕ
171 nnleltp1 12531 . . . . . . . . . . 11 ((1 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
172170, 2, 171sylancr 587 . . . . . . . . . 10 (𝜑 → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
173169, 172mpbid 232 . . . . . . . . 9 (𝜑 → 1 < (𝑀 + 1))
17414nn0ge0d 12448 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑀 + 1))
17515, 174absidd 15330 . . . . . . . . 9 (𝜑 → (abs‘(𝑀 + 1)) = (𝑀 + 1))
176173, 175breqtrrd 5120 . . . . . . . 8 (𝜑 → 1 < (abs‘(𝑀 + 1)))
177 eqid 2729 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))
178 ovex 7382 . . . . . . . . . 10 ((1 / (𝑀 + 1))↑𝑗) ∈ V
17969, 177, 178fvmpt 6930 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
180179adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
181119, 176, 180georeclim 15779 . . . . . . 7 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))) ⇝ ((𝑀 + 1) / ((𝑀 + 1) − 1)))
18280recnd 11143 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℂ)
183180, 182eqeltrd 2828 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) ∈ ℂ)
184180oveq2d 7365 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
18574, 184eqtr4d 2767 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)))
18652, 53, 127, 181, 183, 185isermulc2 15565 . . . . . 6 (𝜑 → seq0( + , 𝐻) ⇝ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))))
187 ax-1cn 11067 . . . . . . . . . . 11 1 ∈ ℂ
188 pncan 11369 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
18954, 187, 188sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
190189oveq2d 7365 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / ((𝑀 + 1) − 1)) = ((𝑀 + 1) / 𝑀))
191190oveq2d 7365 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
19215, 2nndivred 12182 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℝ)
193192recnd 11143 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℂ)
194114, 193, 132, 135div23d 11937 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
195191, 194eqtr4d 2767 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)))
196114, 193, 132, 135divassd 11935 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))))
1972nnne0d 12178 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
198119, 54, 132, 197, 135divdiv1d 11931 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / (𝑀 · (!‘𝑀))))
19954, 132mulcomd 11136 . . . . . . . . . 10 (𝜑 → (𝑀 · (!‘𝑀)) = ((!‘𝑀) · 𝑀))
200199oveq2d 7365 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / (𝑀 · (!‘𝑀))) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
201198, 200eqtrd 2764 . . . . . . . 8 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
202201oveq2d 7365 . . . . . . 7 (𝜑 → (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
203195, 196, 2023eqtrd 2768 . . . . . 6 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
204186, 203breqtrd 5118 . . . . 5 (𝜑 → seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
205 seqex 13910 . . . . . 6 seq0( + , 𝐻) ∈ V
206 ovex 7382 . . . . . 6 (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ V
207205, 206breldm 5851 . . . . 5 (seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) → seq0( + , 𝐻) ∈ dom ⇝ )
208204, 207syl 17 . . . 4 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
20952, 53, 60, 68, 74, 81, 147, 168, 208isumle 15751 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) ≤ Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
210 eqid 2729 . . . . 5 (ℤ‘(0 + 𝑀)) = (ℤ‘(0 + 𝑀))
211 fveq2 6822 . . . . 5 (𝑘 = (𝑀 + 𝑗) → (𝐺𝑘) = (𝐺‘(𝑀 + 𝑗)))
21254addlidd 11317 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
213212fveq2d 6826 . . . . . . . 8 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
214213eleq2d 2814 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘(0 + 𝑀)) ↔ 𝑘 ∈ (ℤ𝑀)))
215214biimpa 476 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → 𝑘 ∈ (ℤ𝑀))
216215, 41syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → (𝐺𝑘) ∈ ℂ)
21752, 210, 211, 21, 53, 216isumshft 15746 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)))
218213sumeq1d 15607 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
219217, 218eqtr3d 2766 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
22081recnd 11143 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℂ)
22152, 53, 74, 220, 204isumclim 15664 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
222209, 219, 2213brtr3d 5123 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
2237, 11, 19, 51, 222letrd 11273 1 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  seqcseq 13908  cexp 13968  !cfa 14180   shift cshi 14973  abscabs 15141  cli 15391  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  ef01bndlem  16093  eirrlem  16113  dveflem  25881  subfaclim  35181
  Copyright terms: Public domain W3C validator