MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftlub Structured version   Visualization version   GIF version

Theorem eftlub 15456
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eftl.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
eftl.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
eftl.3 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
eftl.4 (𝜑𝑀 ∈ ℕ)
eftl.5 (𝜑𝐴 ∈ ℂ)
eftl.6 (𝜑 → (abs‘𝐴) ≤ 1)
Assertion
Ref Expression
eftlub (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑘,𝑛)

Proof of Theorem eftlub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eftl.5 . . . 4 (𝜑𝐴 ∈ ℂ)
2 eftl.4 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11949 . . . 4 (𝜑𝑀 ∈ ℕ0)
4 eftl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
54eftlcl 15454 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
61, 3, 5syl2anc 586 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
76abscld 14790 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ∈ ℝ)
81abscld 14790 . . 3 (𝜑 → (abs‘𝐴) ∈ ℝ)
9 eftl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
109reeftlcl 15455 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
118, 3, 10syl2anc 586 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
128, 3reexpcld 13521 . . 3 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℝ)
13 peano2nn0 11931 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
143, 13syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℕ0)
1514nn0red 11950 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ)
163faccld 13638 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℕ)
1716, 2nnmulcld 11684 . . . 4 (𝜑 → ((!‘𝑀) · 𝑀) ∈ ℕ)
1815, 17nndivred 11685 . . 3 (𝜑 → ((𝑀 + 1) / ((!‘𝑀) · 𝑀)) ∈ ℝ)
1912, 18remulcld 10665 . 2 (𝜑 → (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ ℝ)
20 eqid 2821 . . 3 (ℤ𝑀) = (ℤ𝑀)
212nnzd 12080 . . . 4 (𝜑𝑀 ∈ ℤ)
22 eqidd 2822 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
23 eluznn0 12311 . . . . . 6 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
243, 23sylan 582 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
254eftval 15424 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2625adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
27 eftcl 15421 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
281, 27sylan 582 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2926, 28eqeltrd 2913 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3024, 29syldan 593 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
314eftlcvg 15453 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
321, 3, 31syl2anc 586 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3320, 21, 22, 30, 32isumclim2 15107 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘))
34 eqidd 2822 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐺𝑘))
359eftval 15424 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3635adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
37 reeftcl 15422 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
388, 37sylan 582 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
3936, 38eqeltrd 2913 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4024, 39syldan 593 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4140recnd 10663 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
428recnd 10663 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
439eftlcvg 15453 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4442, 3, 43syl2anc 586 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4520, 21, 34, 41, 44isumclim2 15107 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
46 eftabs 15423 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
471, 46sylan 582 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4826fveq2d 6668 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
4947, 48, 363eqtr4rd 2867 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5024, 49syldan 593 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5120, 33, 45, 21, 30, 50iserabs 15164 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
52 nn0uz 12274 . . . 4 0 = (ℤ‘0)
53 0zd 11987 . . . 4 (𝜑 → 0 ∈ ℤ)
542nncnd 11648 . . . . 5 (𝜑𝑀 ∈ ℂ)
55 nn0cn 11901 . . . . 5 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
56 nn0ex 11897 . . . . . . . 8 0 ∈ V
5756mptex 6980 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) ∈ V
589, 57eqeltri 2909 . . . . . 6 𝐺 ∈ V
5958shftval4 14430 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
6054, 55, 59syl2an 597 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
61 nn0addcl 11926 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
623, 61sylan 582 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
639eftval 15424 . . . . . 6 ((𝑀 + 𝑗) ∈ ℕ0 → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
6462, 63syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
658adantr 483 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
66 reeftcl 15422 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (𝑀 + 𝑗) ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6765, 62, 66syl2anc 586 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6864, 67eqeltrd 2913 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ∈ ℝ)
69 oveq2 7158 . . . . . . 7 (𝑛 = 𝑗 → ((1 / (𝑀 + 1))↑𝑛) = ((1 / (𝑀 + 1))↑𝑗))
7069oveq2d 7166 . . . . . 6 (𝑛 = 𝑗 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
71 eftl.3 . . . . . 6 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
72 ovex 7183 . . . . . 6 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ V
7370, 71, 72fvmpt 6762 . . . . 5 (𝑗 ∈ ℕ0 → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7473adantl 484 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7512, 16nndivred 11685 . . . . . 6 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
7675adantr 483 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
772peano2nnd 11649 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℕ)
7877nnrecred 11682 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
79 reexpcl 13440 . . . . . 6 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8078, 79sylan 582 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8176, 80remulcld 10665 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ)
8265, 62reexpcld 13521 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ)
8312adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℝ)
8462faccld 13638 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8584nnred 11647 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℝ)
8685, 81remulcld 10665 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))) ∈ ℝ)
873adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑀 ∈ ℕ0)
88 uzid 12252 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
8921, 88syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
90 uzaddcl 12298 . . . . . . . . 9 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
9189, 90sylan 582 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
921absge0d 14798 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐴))
9392adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
94 eftl.6 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ≤ 1)
9594adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ≤ 1)
9665, 87, 91, 93, 95leexp2rd 13612 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((abs‘𝐴)↑𝑀))
9716adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℕ)
98 nnexpcl 13436 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
9977, 98sylan 582 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10097, 99nnmulcld 11684 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℕ)
101100nnred 11647 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ)
1028, 3, 92expge0d 13522 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((abs‘𝐴)↑𝑀))
10312, 102jca 514 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
104103adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
105 faclbnd6 13653 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
1063, 105sylan 582 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
107 lemul1a 11488 . . . . . . . . . 10 (((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ ∧ (!‘(𝑀 + 𝑗)) ∈ ℝ ∧ (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀))) ∧ ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗))) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
108101, 85, 104, 106, 107syl31anc 1369 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
10985, 83remulcld 10665 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ∈ ℝ)
110100nnrpd 12423 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ+)
11183, 109, 110lemuldiv2d 12475 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ↔ ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
112108, 111mpbid 234 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
11384nncnd 11648 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℂ)
11412recnd 10663 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℂ)
115114adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℂ)
116100nncnd 11648 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℂ)
117100nnne0d 11681 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≠ 0)
118113, 115, 116, 117divassd 11445 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
11977nncnd 11648 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ ℂ)
120119adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℂ)
12177adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ)
122121nnne0d 11681 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ≠ 0)
123 nn0z 11999 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
124123adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
125120, 122, 124exprecd 13512 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) = (1 / ((𝑀 + 1)↑𝑗)))
126125oveq2d 7166 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
12775recnd 10663 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
128127adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
12999nncnd 11648 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℂ)
13099nnne0d 11681 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ≠ 0)
131128, 129, 130divrecd 11413 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
13216nncnd 11648 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ∈ ℂ)
133132adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℂ)
134 facne0 13640 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (!‘𝑀) ≠ 0)
1353, 134syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ≠ 0)
136135adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ≠ 0)
137115, 133, 129, 136, 130divdiv1d 11441 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
138126, 131, 1373eqtr2rd 2863 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
139138oveq2d 7166 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
140118, 139eqtrd 2856 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
141112, 140breqtrd 5084 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14282, 83, 86, 96, 141letrd 10791 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14384nngt0d 11680 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 < (!‘(𝑀 + 𝑗)))
144 ledivmul 11510 . . . . . . 7 ((((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ ∧ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ ∧ ((!‘(𝑀 + 𝑗)) ∈ ℝ ∧ 0 < (!‘(𝑀 + 𝑗)))) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
14582, 81, 85, 143, 144syl112anc 1370 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
146142, 145mpbird 259 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
14764, 146eqbrtrd 5080 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
148 0z 11986 . . . . . 6 0 ∈ ℤ
14921znegcld 12083 . . . . . 6 (𝜑 → -𝑀 ∈ ℤ)
15058seqshft 14438 . . . . . 6 ((0 ∈ ℤ ∧ -𝑀 ∈ ℤ) → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
151148, 149, 150sylancr 589 . . . . 5 (𝜑 → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
152 0cn 10627 . . . . . . . . . . . 12 0 ∈ ℂ
153 subneg 10929 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 − -𝑀) = (0 + 𝑀))
154152, 153mpan 688 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 − -𝑀) = (0 + 𝑀))
155 addid2 10817 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
156154, 155eqtrd 2856 . . . . . . . . . 10 (𝑀 ∈ ℂ → (0 − -𝑀) = 𝑀)
15754, 156syl 17 . . . . . . . . 9 (𝜑 → (0 − -𝑀) = 𝑀)
158157seqeq1d 13369 . . . . . . . 8 (𝜑 → seq(0 − -𝑀)( + , 𝐺) = seq𝑀( + , 𝐺))
159158, 45eqbrtrd 5080 . . . . . . 7 (𝜑 → seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
160 seqex 13365 . . . . . . . 8 seq(0 − -𝑀)( + , 𝐺) ∈ V
161 climshft 14927 . . . . . . . 8 ((-𝑀 ∈ ℤ ∧ seq(0 − -𝑀)( + , 𝐺) ∈ V) → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
162149, 160, 161sylancl 588 . . . . . . 7 (𝜑 → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
163159, 162mpbird 259 . . . . . 6 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
164 ovex 7183 . . . . . . 7 (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V
165 sumex 15038 . . . . . . 7 Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ V
166164, 165breldm 5771 . . . . . 6 ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
167163, 166syl 17 . . . . 5 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
168151, 167eqeltrd 2913 . . . 4 (𝜑 → seq0( + , (𝐺 shift -𝑀)) ∈ dom ⇝ )
1692nnge1d 11679 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
170 1nn 11643 . . . . . . . . . . 11 1 ∈ ℕ
171 nnleltp1 12031 . . . . . . . . . . 11 ((1 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
172170, 2, 171sylancr 589 . . . . . . . . . 10 (𝜑 → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
173169, 172mpbid 234 . . . . . . . . 9 (𝜑 → 1 < (𝑀 + 1))
17414nn0ge0d 11952 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑀 + 1))
17515, 174absidd 14776 . . . . . . . . 9 (𝜑 → (abs‘(𝑀 + 1)) = (𝑀 + 1))
176173, 175breqtrrd 5086 . . . . . . . 8 (𝜑 → 1 < (abs‘(𝑀 + 1)))
177 eqid 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))
178 ovex 7183 . . . . . . . . . 10 ((1 / (𝑀 + 1))↑𝑗) ∈ V
17969, 177, 178fvmpt 6762 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
180179adantl 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
181119, 176, 180georeclim 15222 . . . . . . 7 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))) ⇝ ((𝑀 + 1) / ((𝑀 + 1) − 1)))
18280recnd 10663 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℂ)
183180, 182eqeltrd 2913 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) ∈ ℂ)
184180oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
18574, 184eqtr4d 2859 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)))
18652, 53, 127, 181, 183, 185isermulc2 15008 . . . . . 6 (𝜑 → seq0( + , 𝐻) ⇝ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))))
187 ax-1cn 10589 . . . . . . . . . . 11 1 ∈ ℂ
188 pncan 10886 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
18954, 187, 188sylancl 588 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
190189oveq2d 7166 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / ((𝑀 + 1) − 1)) = ((𝑀 + 1) / 𝑀))
191190oveq2d 7166 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
19215, 2nndivred 11685 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℝ)
193192recnd 10663 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℂ)
194114, 193, 132, 135div23d 11447 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
195191, 194eqtr4d 2859 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)))
196114, 193, 132, 135divassd 11445 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))))
1972nnne0d 11681 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
198119, 54, 132, 197, 135divdiv1d 11441 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / (𝑀 · (!‘𝑀))))
19954, 132mulcomd 10656 . . . . . . . . . 10 (𝜑 → (𝑀 · (!‘𝑀)) = ((!‘𝑀) · 𝑀))
200199oveq2d 7166 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / (𝑀 · (!‘𝑀))) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
201198, 200eqtrd 2856 . . . . . . . 8 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
202201oveq2d 7166 . . . . . . 7 (𝜑 → (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
203195, 196, 2023eqtrd 2860 . . . . . 6 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
204186, 203breqtrd 5084 . . . . 5 (𝜑 → seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
205 seqex 13365 . . . . . 6 seq0( + , 𝐻) ∈ V
206 ovex 7183 . . . . . 6 (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ V
207205, 206breldm 5771 . . . . 5 (seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) → seq0( + , 𝐻) ∈ dom ⇝ )
208204, 207syl 17 . . . 4 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
20952, 53, 60, 68, 74, 81, 147, 168, 208isumle 15193 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) ≤ Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
210 eqid 2821 . . . . 5 (ℤ‘(0 + 𝑀)) = (ℤ‘(0 + 𝑀))
211 fveq2 6664 . . . . 5 (𝑘 = (𝑀 + 𝑗) → (𝐺𝑘) = (𝐺‘(𝑀 + 𝑗)))
21254addid2d 10835 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
213212fveq2d 6668 . . . . . . . 8 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
214213eleq2d 2898 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘(0 + 𝑀)) ↔ 𝑘 ∈ (ℤ𝑀)))
215214biimpa 479 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → 𝑘 ∈ (ℤ𝑀))
216215, 41syldan 593 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → (𝐺𝑘) ∈ ℂ)
21752, 210, 211, 21, 53, 216isumshft 15188 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)))
218213sumeq1d 15052 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
219217, 218eqtr3d 2858 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
22081recnd 10663 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℂ)
22152, 53, 74, 220, 204isumclim 15106 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
222209, 219, 2213brtr3d 5089 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
2237, 11, 19, 51, 222letrd 10791 1 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494   class class class wbr 5058  cmpt 5138  dom cdm 5549  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  0cn0 11891  cz 11975  cuz 12237  seqcseq 13363  cexp 13423  !cfa 13627   shift cshi 14419  abscabs 14587  cli 14835  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037
This theorem is referenced by:  ef01bndlem  15531  eirrlem  15551  dveflem  24570  subfaclim  32430
  Copyright terms: Public domain W3C validator