MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftlub Structured version   Visualization version   GIF version

Theorem eftlub 15053
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eftl.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
eftl.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
eftl.3 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
eftl.4 (𝜑𝑀 ∈ ℕ)
eftl.5 (𝜑𝐴 ∈ ℂ)
eftl.6 (𝜑 → (abs‘𝐴) ≤ 1)
Assertion
Ref Expression
eftlub (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑘,𝑛)

Proof of Theorem eftlub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eftl.5 . . . 4 (𝜑𝐴 ∈ ℂ)
2 eftl.4 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11611 . . . 4 (𝜑𝑀 ∈ ℕ0)
4 eftl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
54eftlcl 15051 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
61, 3, 5syl2anc 575 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
76abscld 14392 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ∈ ℝ)
81abscld 14392 . . 3 (𝜑 → (abs‘𝐴) ∈ ℝ)
9 eftl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
109reeftlcl 15052 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
118, 3, 10syl2anc 575 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
128, 3reexpcld 13242 . . 3 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℝ)
13 peano2nn0 11593 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
143, 13syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℕ0)
1514nn0red 11612 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ)
16 faccl 13284 . . . . . 6 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
173, 16syl 17 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℕ)
1817, 2nnmulcld 11348 . . . 4 (𝜑 → ((!‘𝑀) · 𝑀) ∈ ℕ)
1915, 18nndivred 11349 . . 3 (𝜑 → ((𝑀 + 1) / ((!‘𝑀) · 𝑀)) ∈ ℝ)
2012, 19remulcld 10349 . 2 (𝜑 → (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ ℝ)
21 eqid 2802 . . 3 (ℤ𝑀) = (ℤ𝑀)
222nnzd 11741 . . . 4 (𝜑𝑀 ∈ ℤ)
23 eqidd 2803 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
24 eluznn0 11970 . . . . . 6 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
253, 24sylan 571 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
264eftval 15021 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2726adantl 469 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
28 eftcl 15018 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
291, 28sylan 571 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
3027, 29eqeltrd 2881 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3125, 30syldan 581 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
324eftlcvg 15050 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
331, 3, 32syl2anc 575 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3421, 22, 23, 31, 33isumclim2 14706 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘))
35 eqidd 2803 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐺𝑘))
369eftval 15021 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3736adantl 469 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
38 reeftcl 15019 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
398, 38sylan 571 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
4037, 39eqeltrd 2881 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4125, 40syldan 581 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4241recnd 10347 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
438recnd 10347 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
449eftlcvg 15050 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4543, 3, 44syl2anc 575 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4621, 22, 35, 42, 45isumclim2 14706 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
47 eftabs 15020 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
481, 47sylan 571 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4927fveq2d 6406 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
5048, 49, 373eqtr4rd 2847 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5125, 50syldan 581 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5221, 34, 46, 22, 31, 51iserabs 14763 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
53 nn0uz 11934 . . . 4 0 = (ℤ‘0)
54 0zd 11649 . . . 4 (𝜑 → 0 ∈ ℤ)
552nncnd 11315 . . . . 5 (𝜑𝑀 ∈ ℂ)
56 nn0cn 11563 . . . . 5 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
57 nn0ex 11559 . . . . . . . 8 0 ∈ V
5857mptex 6705 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) ∈ V
599, 58eqeltri 2877 . . . . . 6 𝐺 ∈ V
6059shftval4 14034 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
6155, 56, 60syl2an 585 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
62 nn0addcl 11588 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
633, 62sylan 571 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
649eftval 15021 . . . . . 6 ((𝑀 + 𝑗) ∈ ℕ0 → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
6563, 64syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
668adantr 468 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
67 reeftcl 15019 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (𝑀 + 𝑗) ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6866, 63, 67syl2anc 575 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6965, 68eqeltrd 2881 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ∈ ℝ)
70 oveq2 6876 . . . . . . 7 (𝑛 = 𝑗 → ((1 / (𝑀 + 1))↑𝑛) = ((1 / (𝑀 + 1))↑𝑗))
7170oveq2d 6884 . . . . . 6 (𝑛 = 𝑗 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
72 eftl.3 . . . . . 6 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
73 ovex 6900 . . . . . 6 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ V
7471, 72, 73fvmpt 6497 . . . . 5 (𝑗 ∈ ℕ0 → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7574adantl 469 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7612, 17nndivred 11349 . . . . . 6 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
7776adantr 468 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
782peano2nnd 11316 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℕ)
7978nnrecred 11346 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
80 reexpcl 13094 . . . . . 6 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8179, 80sylan 571 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8277, 81remulcld 10349 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ)
8366, 63reexpcld 13242 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ)
8412adantr 468 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℝ)
85 faccl 13284 . . . . . . . . . 10 ((𝑀 + 𝑗) ∈ ℕ0 → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8663, 85syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8786nnred 11314 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℝ)
8887, 82remulcld 10349 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))) ∈ ℝ)
893adantr 468 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑀 ∈ ℕ0)
90 uzid 11913 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
9122, 90syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
92 uzaddcl 11956 . . . . . . . . 9 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
9391, 92sylan 571 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
941absge0d 14400 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐴))
9594adantr 468 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
96 eftl.6 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ≤ 1)
9796adantr 468 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ≤ 1)
9866, 89, 93, 95, 97leexp2rd 13259 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((abs‘𝐴)↑𝑀))
9917adantr 468 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℕ)
100 nnexpcl 13090 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10178, 100sylan 571 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10299, 101nnmulcld 11348 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℕ)
103102nnred 11314 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ)
1048, 3, 94expge0d 13243 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((abs‘𝐴)↑𝑀))
10512, 104jca 503 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
106105adantr 468 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
107 faclbnd6 13300 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
1083, 107sylan 571 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
109 lemul1a 11156 . . . . . . . . . 10 (((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ ∧ (!‘(𝑀 + 𝑗)) ∈ ℝ ∧ (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀))) ∧ ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗))) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
110103, 87, 106, 108, 109syl31anc 1485 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
11187, 84remulcld 10349 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ∈ ℝ)
112102nnrpd 12078 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ+)
11384, 111, 112lemuldiv2d 12130 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ↔ ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
114110, 113mpbid 223 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
11586nncnd 11315 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℂ)
11612recnd 10347 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℂ)
117116adantr 468 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℂ)
118102nncnd 11315 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℂ)
119102nnne0d 11345 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≠ 0)
120115, 117, 118, 119divassd 11115 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
12178nncnd 11315 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ ℂ)
122121adantr 468 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℂ)
12378adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ)
124123nnne0d 11345 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ≠ 0)
125 nn0z 11660 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
126125adantl 469 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
127122, 124, 126exprecd 13233 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) = (1 / ((𝑀 + 1)↑𝑗)))
128127oveq2d 6884 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
12976recnd 10347 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
130129adantr 468 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
131101nncnd 11315 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℂ)
132101nnne0d 11345 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ≠ 0)
133130, 131, 132divrecd 11083 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
13417nncnd 11315 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ∈ ℂ)
135134adantr 468 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℂ)
136 facne0 13287 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (!‘𝑀) ≠ 0)
1373, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ≠ 0)
138137adantr 468 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ≠ 0)
139117, 135, 131, 138, 132divdiv1d 11111 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
140128, 133, 1393eqtr2rd 2843 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
141140oveq2d 6884 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
142120, 141eqtrd 2836 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
143114, 142breqtrd 4863 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14483, 84, 88, 98, 143letrd 10473 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14586nngt0d 11344 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 < (!‘(𝑀 + 𝑗)))
146 ledivmul 11178 . . . . . . 7 ((((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ ∧ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ ∧ ((!‘(𝑀 + 𝑗)) ∈ ℝ ∧ 0 < (!‘(𝑀 + 𝑗)))) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
14783, 82, 87, 145, 146syl112anc 1486 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
148144, 147mpbird 248 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
14965, 148eqbrtrd 4859 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
150 0z 11648 . . . . . 6 0 ∈ ℤ
15122znegcld 11744 . . . . . 6 (𝜑 → -𝑀 ∈ ℤ)
15259seqshft 14042 . . . . . 6 ((0 ∈ ℤ ∧ -𝑀 ∈ ℤ) → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
153150, 151, 152sylancr 577 . . . . 5 (𝜑 → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
154 0cn 10311 . . . . . . . . . . . 12 0 ∈ ℂ
155 subneg 10609 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 − -𝑀) = (0 + 𝑀))
156154, 155mpan 673 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 − -𝑀) = (0 + 𝑀))
157 addid2 10498 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
158156, 157eqtrd 2836 . . . . . . . . . 10 (𝑀 ∈ ℂ → (0 − -𝑀) = 𝑀)
15955, 158syl 17 . . . . . . . . 9 (𝜑 → (0 − -𝑀) = 𝑀)
160159seqeq1d 13024 . . . . . . . 8 (𝜑 → seq(0 − -𝑀)( + , 𝐺) = seq𝑀( + , 𝐺))
161160, 46eqbrtrd 4859 . . . . . . 7 (𝜑 → seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
162 seqex 13020 . . . . . . . 8 seq(0 − -𝑀)( + , 𝐺) ∈ V
163 climshft 14524 . . . . . . . 8 ((-𝑀 ∈ ℤ ∧ seq(0 − -𝑀)( + , 𝐺) ∈ V) → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
164151, 162, 163sylancl 576 . . . . . . 7 (𝜑 → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
165161, 164mpbird 248 . . . . . 6 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
166 ovex 6900 . . . . . . 7 (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V
167 sumex 14635 . . . . . . 7 Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ V
168166, 167breldm 5524 . . . . . 6 ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
169165, 168syl 17 . . . . 5 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
170153, 169eqeltrd 2881 . . . 4 (𝜑 → seq0( + , (𝐺 shift -𝑀)) ∈ dom ⇝ )
1712nnge1d 11343 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
172 1nn 11310 . . . . . . . . . . 11 1 ∈ ℕ
173 nnleltp1 11692 . . . . . . . . . . 11 ((1 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
174172, 2, 173sylancr 577 . . . . . . . . . 10 (𝜑 → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
175171, 174mpbid 223 . . . . . . . . 9 (𝜑 → 1 < (𝑀 + 1))
17614nn0ge0d 11614 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑀 + 1))
17715, 176absidd 14378 . . . . . . . . 9 (𝜑 → (abs‘(𝑀 + 1)) = (𝑀 + 1))
178175, 177breqtrrd 4865 . . . . . . . 8 (𝜑 → 1 < (abs‘(𝑀 + 1)))
179 eqid 2802 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))
180 ovex 6900 . . . . . . . . . 10 ((1 / (𝑀 + 1))↑𝑗) ∈ V
18170, 179, 180fvmpt 6497 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
182181adantl 469 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
183121, 178, 182georeclim 14819 . . . . . . 7 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))) ⇝ ((𝑀 + 1) / ((𝑀 + 1) − 1)))
18481recnd 10347 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℂ)
185182, 184eqeltrd 2881 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) ∈ ℂ)
186182oveq2d 6884 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
18775, 186eqtr4d 2839 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)))
18853, 54, 129, 183, 185, 187isermulc2 14605 . . . . . 6 (𝜑 → seq0( + , 𝐻) ⇝ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))))
189 ax-1cn 10273 . . . . . . . . . . 11 1 ∈ ℂ
190 pncan 10566 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
19155, 189, 190sylancl 576 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
192191oveq2d 6884 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / ((𝑀 + 1) − 1)) = ((𝑀 + 1) / 𝑀))
193192oveq2d 6884 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
19415, 2nndivred 11349 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℝ)
195194recnd 10347 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℂ)
196116, 195, 134, 137div23d 11117 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
197193, 196eqtr4d 2839 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)))
198116, 195, 134, 137divassd 11115 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))))
1992nnne0d 11345 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
200121, 55, 134, 199, 137divdiv1d 11111 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / (𝑀 · (!‘𝑀))))
20155, 134mulcomd 10340 . . . . . . . . . 10 (𝜑 → (𝑀 · (!‘𝑀)) = ((!‘𝑀) · 𝑀))
202201oveq2d 6884 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / (𝑀 · (!‘𝑀))) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
203200, 202eqtrd 2836 . . . . . . . 8 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
204203oveq2d 6884 . . . . . . 7 (𝜑 → (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
205197, 198, 2043eqtrd 2840 . . . . . 6 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
206188, 205breqtrd 4863 . . . . 5 (𝜑 → seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
207 seqex 13020 . . . . . 6 seq0( + , 𝐻) ∈ V
208 ovex 6900 . . . . . 6 (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ V
209207, 208breldm 5524 . . . . 5 (seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) → seq0( + , 𝐻) ∈ dom ⇝ )
210206, 209syl 17 . . . 4 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
21153, 54, 61, 69, 75, 82, 149, 170, 210isumle 14792 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) ≤ Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
212 eqid 2802 . . . . 5 (ℤ‘(0 + 𝑀)) = (ℤ‘(0 + 𝑀))
213 fveq2 6402 . . . . 5 (𝑘 = (𝑀 + 𝑗) → (𝐺𝑘) = (𝐺‘(𝑀 + 𝑗)))
21455addid2d 10516 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
215214fveq2d 6406 . . . . . . . 8 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
216215eleq2d 2867 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘(0 + 𝑀)) ↔ 𝑘 ∈ (ℤ𝑀)))
217216biimpa 464 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → 𝑘 ∈ (ℤ𝑀))
218217, 42syldan 581 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → (𝐺𝑘) ∈ ℂ)
21953, 212, 213, 22, 54, 218isumshft 14787 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)))
220215sumeq1d 14648 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
221219, 220eqtr3d 2838 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
22282recnd 10347 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℂ)
22353, 54, 75, 222, 206isumclim 14705 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
224211, 221, 2233brtr3d 4868 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
2257, 11, 20, 52, 224letrd 10473 1 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2155  wne 2974  Vcvv 3387   class class class wbr 4837  cmpt 4916  dom cdm 5305  cfv 6095  (class class class)co 6868  cc 10213  cr 10214  0cc0 10215  1c1 10216   + caddc 10218   · cmul 10220   < clt 10353  cle 10354  cmin 10545  -cneg 10546   / cdiv 10963  cn 11299  0cn0 11553  cz 11637  cuz 11898  seqcseq 13018  cexp 13077  !cfa 13274   shift cshi 14023  abscabs 14191  cli 14432  Σcsu 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-inf2 8779  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292  ax-pre-sup 10293  ax-addf 10294  ax-mulf 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-se 5265  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-isom 6104  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-pm 8089  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-sup 8581  df-inf 8582  df-oi 8648  df-card 9042  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-2 11358  df-3 11359  df-n0 11554  df-z 11638  df-uz 11899  df-rp 12041  df-ico 12393  df-fz 12544  df-fzo 12684  df-fl 12811  df-seq 13019  df-exp 13078  df-fac 13275  df-hash 13332  df-shft 14024  df-cj 14056  df-re 14057  df-im 14058  df-sqrt 14192  df-abs 14193  df-limsup 14419  df-clim 14436  df-rlim 14437  df-sum 14634
This theorem is referenced by:  ef01bndlem  15128  eirrlem  15146  dveflem  23950  subfaclim  31487
  Copyright terms: Public domain W3C validator