MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgrat Structured version   Visualization version   GIF version

Theorem cvgrat 15849
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
cvgrat.1 𝑍 = (ℤ𝑀)
cvgrat.2 𝑊 = (ℤ𝑁)
cvgrat.3 (𝜑𝐴 ∈ ℝ)
cvgrat.4 (𝜑𝐴 < 1)
cvgrat.5 (𝜑𝑁𝑍)
cvgrat.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgrat.7 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgrat (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍

Proof of Theorem cvgrat
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgrat.2 . . 3 𝑊 = (ℤ𝑁)
2 cvgrat.5 . . . . . . 7 (𝜑𝑁𝑍)
3 cvgrat.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2838 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12803 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
7 uzid 12808 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
86, 7syl 17 . . . 4 (𝜑𝑁 ∈ (ℤ𝑁))
98, 1eleqtrrdi 2839 . . 3 (𝜑𝑁𝑊)
10 oveq1 7394 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁) = (𝑘𝑁))
1110oveq2d 7403 . . . . . 6 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
12 eqid 2729 . . . . . 6 (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))
13 ovex 7420 . . . . . 6 (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ V
1411, 12, 13fvmpt 6968 . . . . 5 (𝑘𝑊 → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
1514adantl 481 . . . 4 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
16 0re 11176 . . . . . . 7 0 ∈ ℝ
17 cvgrat.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
18 ifcl 4534 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
1916, 17, 18sylancr 587 . . . . . 6 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
2019adantr 480 . . . . 5 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
21 simpr 484 . . . . . . 7 ((𝜑𝑘𝑊) → 𝑘𝑊)
2221, 1eleqtrdi 2838 . . . . . 6 ((𝜑𝑘𝑊) → 𝑘 ∈ (ℤ𝑁))
23 uznn0sub 12832 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → (𝑘𝑁) ∈ ℕ0)
2422, 23syl 17 . . . . 5 ((𝜑𝑘𝑊) → (𝑘𝑁) ∈ ℕ0)
2520, 24reexpcld 14128 . . . 4 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℝ)
2615, 25eqeltrd 2828 . . 3 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) ∈ ℝ)
27 uzss 12816 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
284, 27syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
2928, 1, 33sstr4g 4000 . . . . 5 (𝜑𝑊𝑍)
3029sselda 3946 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
31 cvgrat.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3230, 31syldan 591 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3323adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝑁) ∈ ℕ0)
34 oveq2 7395 . . . . . . . . 9 (𝑛 = (𝑘𝑁) → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
35 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))
3634, 35, 13fvmpt 6968 . . . . . . . 8 ((𝑘𝑁) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
3733, 36syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
386zcnd 12639 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
39 eluzelz 12803 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
4039zcnd 12639 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℂ)
41 nn0ex 12448 . . . . . . . . . 10 0 ∈ V
4241mptex 7197 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) ∈ V
4342shftval 15040 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
4438, 40, 43syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
45 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
4645, 1eleqtrrdi 2839 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑊)
4746, 14syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
4837, 44, 473eqtr4rd 2775 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘))
496, 48seqfeq 13992 . . . . 5 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)))
5042seqshft 15051 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
516, 6, 50syl2anc 584 . . . . 5 (𝜑 → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5238subidd 11521 . . . . . . 7 (𝜑 → (𝑁𝑁) = 0)
5352seqeq1d 13972 . . . . . 6 (𝜑 → seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) = seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))))
5453oveq1d 7402 . . . . 5 (𝜑 → (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5549, 51, 543eqtrd 2768 . . . 4 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5619recnd 11202 . . . . . . 7 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
57 max2 13147 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5817, 16, 57sylancl 586 . . . . . . . . 9 (𝜑 → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5919, 58absidd 15389 . . . . . . . 8 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) = if(𝐴 ≤ 0, 0, 𝐴))
60 0lt1 11700 . . . . . . . . 9 0 < 1
61 cvgrat.4 . . . . . . . . 9 (𝜑𝐴 < 1)
62 breq1 5110 . . . . . . . . . 10 (0 = if(𝐴 ≤ 0, 0, 𝐴) → (0 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
63 breq1 5110 . . . . . . . . . 10 (𝐴 = if(𝐴 ≤ 0, 0, 𝐴) → (𝐴 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
6462, 63ifboth 4528 . . . . . . . . 9 ((0 < 1 ∧ 𝐴 < 1) → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6560, 61, 64sylancr 587 . . . . . . . 8 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6659, 65eqbrtrd 5129 . . . . . . 7 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) < 1)
67 oveq2 7395 . . . . . . . . 9 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
68 ovex 7420 . . . . . . . . 9 (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘) ∈ V
6967, 35, 68fvmpt 6968 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7069adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7156, 66, 70geolim 15836 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
72 seqex 13968 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V
73 climshft 15542 . . . . . . 7 ((𝑁 ∈ ℤ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V) → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
746, 72, 73sylancl 586 . . . . . 6 (𝜑 → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
7571, 74mpbird 257 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
76 ovex 7420 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ V
77 ovex 7420 . . . . . 6 (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ∈ V
7876, 77breldm 5872 . . . . 5 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
7975, 78syl 17 . . . 4 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
8055, 79eqeltrd 2828 . . 3 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ∈ dom ⇝ )
81 fveq2 6858 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
8281eleq1d 2813 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
8331ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8482, 83, 2rspcdva 3589 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℂ)
8584abscld 15405 . . 3 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
86 2fveq3 6863 . . . . . . . 8 (𝑛 = 𝑁 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑁)))
87 oveq1 7394 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑁) = (𝑁𝑁))
8887oveq2d 7403 . . . . . . . . 9 (𝑛 = 𝑁 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))
8988oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑁 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
9086, 89breq12d 5120 . . . . . . 7 (𝑛 = 𝑁 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))))
9190imbi2d 340 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))))
92 2fveq3 6863 . . . . . . . 8 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
9311oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
9492, 93breq12d 5120 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
9594imbi2d 340 . . . . . 6 (𝑛 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
96 2fveq3 6863 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (abs‘(𝐹𝑛)) = (abs‘(𝐹‘(𝑘 + 1))))
97 oveq1 7394 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (𝑛𝑁) = ((𝑘 + 1) − 𝑁))
9897oveq2d 7403 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
9998oveq2d 7403 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
10096, 99breq12d 5120 . . . . . . 7 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
101100imbi2d 340 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
10285leidd 11744 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
10352oveq2d 7403 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑0))
10456exp0d 14105 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑0) = 1)
105103, 104eqtrd 2764 . . . . . . . . 9 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = 1)
106105oveq2d 7403 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = ((abs‘(𝐹𝑁)) · 1))
10785recnd 11202 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℂ)
108107mulridd 11191 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · 1) = (abs‘(𝐹𝑁)))
109106, 108eqtrd 2764 . . . . . . 7 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = (abs‘(𝐹𝑁)))
110102, 109breqtrrd 5135 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
11132abscld 15405 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
11285adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℝ)
113112, 25remulcld 11204 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ)
11458adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
115 lemul2a 12037 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
116115ex 412 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
117111, 113, 20, 114, 116syl112anc 1376 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
11856adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
119107adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℂ)
12025recnd 11202 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℂ)
121118, 119, 120mul12d 11383 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
122118, 24expp1d 14112 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
12340, 1eleq2s 2846 . . . . . . . . . . . . . . . . 17 (𝑘𝑊𝑘 ∈ ℂ)
124 ax-1cn 11126 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
125 addsub 11432 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
126124, 125mp3an2 1451 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
127123, 38, 126syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
128127oveq2d 7403 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)))
129118, 120mulcomd 11195 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
130122, 128, 1293eqtr4rd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
131130oveq2d 7403 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
132121, 131eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
133132breq2d 5119 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) ↔ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
134117, 133sylibd 239 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
135 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
136135eleq1d 2813 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
137 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
138137eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
139138cbvralvw 3215 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
14083, 139sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
141140adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1421peano2uzs 12861 . . . . . . . . . . . . . . 15 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14329sselda 3946 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝑘 + 1) ∈ 𝑍)
144142, 143sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ 𝑍)
145136, 141, 144rspcdva 3589 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
146145abscld 15405 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
14717adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
148147, 111remulcld 11204 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
14920, 111remulcld 11204 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ)
150 cvgrat.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
15132absge0d 15413 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 0 ≤ (abs‘(𝐹𝑘)))
152 max1 13145 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
15317, 16, 152sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
154153adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
155147, 20, 111, 151, 154lemul1ad 12122 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
156146, 148, 149, 150, 155letrd 11331 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
157 peano2uz 12860 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑁) → (𝑘 + 1) ∈ (ℤ𝑁))
15822, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ (ℤ𝑁))
159 uznn0sub 12832 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ (ℤ𝑁) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
160158, 159syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
16120, 160reexpcld 14128 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) ∈ ℝ)
162112, 161remulcld 11204 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ)
163 letr 11268 . . . . . . . . . . . 12 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
164146, 149, 162, 163syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
165156, 164mpand 695 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
166134, 165syld 47 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
16746, 166syldan 591 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
168167expcom 413 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
169168a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
17091, 95, 101, 95, 110, 169uzind4i 12869 . . . . 5 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
171170impcom 407 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
17247oveq2d 7403 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
173171, 172breqtrrd 5135 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)))
1741, 9, 26, 32, 80, 85, 173cvgcmpce 15784 . 2 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1753, 2, 31iserex 15623 . 2 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
176174, 175mpbird 257 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  0cn0 12442  cz 12529  cuz 12793  seqcseq 13966  cexp 14026   shift cshi 15032  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653
This theorem is referenced by:  efcllem  16043  cvgdvgrat  44302
  Copyright terms: Public domain W3C validator