MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgrat Structured version   Visualization version   GIF version

Theorem cvgrat 15856
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
cvgrat.1 𝑍 = (ℤ𝑀)
cvgrat.2 𝑊 = (ℤ𝑁)
cvgrat.3 (𝜑𝐴 ∈ ℝ)
cvgrat.4 (𝜑𝐴 < 1)
cvgrat.5 (𝜑𝑁𝑍)
cvgrat.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgrat.7 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgrat (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍

Proof of Theorem cvgrat
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgrat.2 . . 3 𝑊 = (ℤ𝑁)
2 cvgrat.5 . . . . . . 7 (𝜑𝑁𝑍)
3 cvgrat.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2839 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12810 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
7 uzid 12815 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
86, 7syl 17 . . . 4 (𝜑𝑁 ∈ (ℤ𝑁))
98, 1eleqtrrdi 2840 . . 3 (𝜑𝑁𝑊)
10 oveq1 7397 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁) = (𝑘𝑁))
1110oveq2d 7406 . . . . . 6 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
12 eqid 2730 . . . . . 6 (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))
13 ovex 7423 . . . . . 6 (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ V
1411, 12, 13fvmpt 6971 . . . . 5 (𝑘𝑊 → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
1514adantl 481 . . . 4 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
16 0re 11183 . . . . . . 7 0 ∈ ℝ
17 cvgrat.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
18 ifcl 4537 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
1916, 17, 18sylancr 587 . . . . . 6 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
2019adantr 480 . . . . 5 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
21 simpr 484 . . . . . . 7 ((𝜑𝑘𝑊) → 𝑘𝑊)
2221, 1eleqtrdi 2839 . . . . . 6 ((𝜑𝑘𝑊) → 𝑘 ∈ (ℤ𝑁))
23 uznn0sub 12839 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → (𝑘𝑁) ∈ ℕ0)
2422, 23syl 17 . . . . 5 ((𝜑𝑘𝑊) → (𝑘𝑁) ∈ ℕ0)
2520, 24reexpcld 14135 . . . 4 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℝ)
2615, 25eqeltrd 2829 . . 3 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) ∈ ℝ)
27 uzss 12823 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
284, 27syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
2928, 1, 33sstr4g 4003 . . . . 5 (𝜑𝑊𝑍)
3029sselda 3949 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
31 cvgrat.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3230, 31syldan 591 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3323adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝑁) ∈ ℕ0)
34 oveq2 7398 . . . . . . . . 9 (𝑛 = (𝑘𝑁) → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
35 eqid 2730 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))
3634, 35, 13fvmpt 6971 . . . . . . . 8 ((𝑘𝑁) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
3733, 36syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
386zcnd 12646 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
39 eluzelz 12810 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
4039zcnd 12646 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℂ)
41 nn0ex 12455 . . . . . . . . . 10 0 ∈ V
4241mptex 7200 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) ∈ V
4342shftval 15047 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
4438, 40, 43syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
45 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
4645, 1eleqtrrdi 2840 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑊)
4746, 14syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
4837, 44, 473eqtr4rd 2776 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘))
496, 48seqfeq 13999 . . . . 5 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)))
5042seqshft 15058 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
516, 6, 50syl2anc 584 . . . . 5 (𝜑 → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5238subidd 11528 . . . . . . 7 (𝜑 → (𝑁𝑁) = 0)
5352seqeq1d 13979 . . . . . 6 (𝜑 → seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) = seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))))
5453oveq1d 7405 . . . . 5 (𝜑 → (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5549, 51, 543eqtrd 2769 . . . 4 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5619recnd 11209 . . . . . . 7 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
57 max2 13154 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5817, 16, 57sylancl 586 . . . . . . . . 9 (𝜑 → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5919, 58absidd 15396 . . . . . . . 8 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) = if(𝐴 ≤ 0, 0, 𝐴))
60 0lt1 11707 . . . . . . . . 9 0 < 1
61 cvgrat.4 . . . . . . . . 9 (𝜑𝐴 < 1)
62 breq1 5113 . . . . . . . . . 10 (0 = if(𝐴 ≤ 0, 0, 𝐴) → (0 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
63 breq1 5113 . . . . . . . . . 10 (𝐴 = if(𝐴 ≤ 0, 0, 𝐴) → (𝐴 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
6462, 63ifboth 4531 . . . . . . . . 9 ((0 < 1 ∧ 𝐴 < 1) → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6560, 61, 64sylancr 587 . . . . . . . 8 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6659, 65eqbrtrd 5132 . . . . . . 7 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) < 1)
67 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
68 ovex 7423 . . . . . . . . 9 (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘) ∈ V
6967, 35, 68fvmpt 6971 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7069adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7156, 66, 70geolim 15843 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
72 seqex 13975 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V
73 climshft 15549 . . . . . . 7 ((𝑁 ∈ ℤ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V) → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
746, 72, 73sylancl 586 . . . . . 6 (𝜑 → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
7571, 74mpbird 257 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
76 ovex 7423 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ V
77 ovex 7423 . . . . . 6 (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ∈ V
7876, 77breldm 5875 . . . . 5 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
7975, 78syl 17 . . . 4 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
8055, 79eqeltrd 2829 . . 3 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ∈ dom ⇝ )
81 fveq2 6861 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
8281eleq1d 2814 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
8331ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8482, 83, 2rspcdva 3592 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℂ)
8584abscld 15412 . . 3 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
86 2fveq3 6866 . . . . . . . 8 (𝑛 = 𝑁 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑁)))
87 oveq1 7397 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑁) = (𝑁𝑁))
8887oveq2d 7406 . . . . . . . . 9 (𝑛 = 𝑁 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))
8988oveq2d 7406 . . . . . . . 8 (𝑛 = 𝑁 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
9086, 89breq12d 5123 . . . . . . 7 (𝑛 = 𝑁 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))))
9190imbi2d 340 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))))
92 2fveq3 6866 . . . . . . . 8 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
9311oveq2d 7406 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
9492, 93breq12d 5123 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
9594imbi2d 340 . . . . . 6 (𝑛 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
96 2fveq3 6866 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (abs‘(𝐹𝑛)) = (abs‘(𝐹‘(𝑘 + 1))))
97 oveq1 7397 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (𝑛𝑁) = ((𝑘 + 1) − 𝑁))
9897oveq2d 7406 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
9998oveq2d 7406 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
10096, 99breq12d 5123 . . . . . . 7 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
101100imbi2d 340 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
10285leidd 11751 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
10352oveq2d 7406 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑0))
10456exp0d 14112 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑0) = 1)
105103, 104eqtrd 2765 . . . . . . . . 9 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = 1)
106105oveq2d 7406 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = ((abs‘(𝐹𝑁)) · 1))
10785recnd 11209 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℂ)
108107mulridd 11198 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · 1) = (abs‘(𝐹𝑁)))
109106, 108eqtrd 2765 . . . . . . 7 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = (abs‘(𝐹𝑁)))
110102, 109breqtrrd 5138 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
11132abscld 15412 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
11285adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℝ)
113112, 25remulcld 11211 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ)
11458adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
115 lemul2a 12044 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
116115ex 412 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
117111, 113, 20, 114, 116syl112anc 1376 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
11856adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
119107adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℂ)
12025recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℂ)
121118, 119, 120mul12d 11390 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
122118, 24expp1d 14119 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
12340, 1eleq2s 2847 . . . . . . . . . . . . . . . . 17 (𝑘𝑊𝑘 ∈ ℂ)
124 ax-1cn 11133 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
125 addsub 11439 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
126124, 125mp3an2 1451 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
127123, 38, 126syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
128127oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)))
129118, 120mulcomd 11202 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
130122, 128, 1293eqtr4rd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
131130oveq2d 7406 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
132121, 131eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
133132breq2d 5122 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) ↔ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
134117, 133sylibd 239 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
135 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
136135eleq1d 2814 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
137 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
138137eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
139138cbvralvw 3216 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
14083, 139sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
141140adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1421peano2uzs 12868 . . . . . . . . . . . . . . 15 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14329sselda 3949 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝑘 + 1) ∈ 𝑍)
144142, 143sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ 𝑍)
145136, 141, 144rspcdva 3592 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
146145abscld 15412 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
14717adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
148147, 111remulcld 11211 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
14920, 111remulcld 11211 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ)
150 cvgrat.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
15132absge0d 15420 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 0 ≤ (abs‘(𝐹𝑘)))
152 max1 13152 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
15317, 16, 152sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
154153adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
155147, 20, 111, 151, 154lemul1ad 12129 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
156146, 148, 149, 150, 155letrd 11338 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
157 peano2uz 12867 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑁) → (𝑘 + 1) ∈ (ℤ𝑁))
15822, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ (ℤ𝑁))
159 uznn0sub 12839 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ (ℤ𝑁) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
160158, 159syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
16120, 160reexpcld 14135 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) ∈ ℝ)
162112, 161remulcld 11211 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ)
163 letr 11275 . . . . . . . . . . . 12 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
164146, 149, 162, 163syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
165156, 164mpand 695 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
166134, 165syld 47 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
16746, 166syldan 591 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
168167expcom 413 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
169168a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
17091, 95, 101, 95, 110, 169uzind4i 12876 . . . . 5 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
171170impcom 407 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
17247oveq2d 7406 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
173171, 172breqtrrd 5138 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)))
1741, 9, 26, 32, 80, 85, 173cvgcmpce 15791 . 2 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1753, 2, 31iserex 15630 . 2 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
176174, 175mpbird 257 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  seqcseq 13973  cexp 14033   shift cshi 15039  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  efcllem  16050  cvgdvgrat  44309
  Copyright terms: Public domain W3C validator