MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgrat Structured version   Visualization version   GIF version

Theorem cvgrat 15916
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. Equivalent to first part of Exercise 4 of [Gleason] p. 182. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
cvgrat.1 𝑍 = (ℤ𝑀)
cvgrat.2 𝑊 = (ℤ𝑁)
cvgrat.3 (𝜑𝐴 ∈ ℝ)
cvgrat.4 (𝜑𝐴 < 1)
cvgrat.5 (𝜑𝑁𝑍)
cvgrat.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgrat.7 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgrat (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍

Proof of Theorem cvgrat
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgrat.2 . . 3 𝑊 = (ℤ𝑁)
2 cvgrat.5 . . . . . . 7 (𝜑𝑁𝑍)
3 cvgrat.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2849 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12886 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
7 uzid 12891 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
86, 7syl 17 . . . 4 (𝜑𝑁 ∈ (ℤ𝑁))
98, 1eleqtrrdi 2850 . . 3 (𝜑𝑁𝑊)
10 oveq1 7438 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁) = (𝑘𝑁))
1110oveq2d 7447 . . . . . 6 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
12 eqid 2735 . . . . . 6 (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))
13 ovex 7464 . . . . . 6 (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ V
1411, 12, 13fvmpt 7016 . . . . 5 (𝑘𝑊 → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
1514adantl 481 . . . 4 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
16 0re 11261 . . . . . . 7 0 ∈ ℝ
17 cvgrat.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
18 ifcl 4576 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
1916, 17, 18sylancr 587 . . . . . 6 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
2019adantr 480 . . . . 5 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ)
21 simpr 484 . . . . . . 7 ((𝜑𝑘𝑊) → 𝑘𝑊)
2221, 1eleqtrdi 2849 . . . . . 6 ((𝜑𝑘𝑊) → 𝑘 ∈ (ℤ𝑁))
23 uznn0sub 12915 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → (𝑘𝑁) ∈ ℕ0)
2422, 23syl 17 . . . . 5 ((𝜑𝑘𝑊) → (𝑘𝑁) ∈ ℕ0)
2520, 24reexpcld 14200 . . . 4 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℝ)
2615, 25eqeltrd 2839 . . 3 ((𝜑𝑘𝑊) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) ∈ ℝ)
27 uzss 12899 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
284, 27syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
2928, 1, 33sstr4g 4041 . . . . 5 (𝜑𝑊𝑍)
3029sselda 3995 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
31 cvgrat.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3230, 31syldan 591 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3323adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝑁) ∈ ℕ0)
34 oveq2 7439 . . . . . . . . 9 (𝑛 = (𝑘𝑁) → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
35 eqid 2735 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))
3634, 35, 13fvmpt 7016 . . . . . . . 8 ((𝑘𝑁) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
3733, 36syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
386zcnd 12721 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
39 eluzelz 12886 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
4039zcnd 12721 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℂ)
41 nn0ex 12530 . . . . . . . . . 10 0 ∈ V
4241mptex 7243 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) ∈ V
4342shftval 15110 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
4438, 40, 43syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘) = ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘(𝑘𝑁)))
45 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
4645, 1eleqtrrdi 2850 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑊)
4746, 14syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))
4837, 44, 473eqtr4rd 2786 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘) = (((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)‘𝑘))
496, 48seqfeq 14065 . . . . 5 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)))
5042seqshft 15121 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
516, 6, 50syl2anc 584 . . . . 5 (𝜑 → seq𝑁( + , ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛)) shift 𝑁)) = (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5238subidd 11606 . . . . . . 7 (𝜑 → (𝑁𝑁) = 0)
5352seqeq1d 14045 . . . . . 6 (𝜑 → seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) = seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))))
5453oveq1d 7446 . . . . 5 (𝜑 → (seq(𝑁𝑁)( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5549, 51, 543eqtrd 2779 . . . 4 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁))
5619recnd 11287 . . . . . . 7 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
57 max2 13226 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5817, 16, 57sylancl 586 . . . . . . . . 9 (𝜑 → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
5919, 58absidd 15458 . . . . . . . 8 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) = if(𝐴 ≤ 0, 0, 𝐴))
60 0lt1 11783 . . . . . . . . 9 0 < 1
61 cvgrat.4 . . . . . . . . 9 (𝜑𝐴 < 1)
62 breq1 5151 . . . . . . . . . 10 (0 = if(𝐴 ≤ 0, 0, 𝐴) → (0 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
63 breq1 5151 . . . . . . . . . 10 (𝐴 = if(𝐴 ≤ 0, 0, 𝐴) → (𝐴 < 1 ↔ if(𝐴 ≤ 0, 0, 𝐴) < 1))
6462, 63ifboth 4570 . . . . . . . . 9 ((0 < 1 ∧ 𝐴 < 1) → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6560, 61, 64sylancr 587 . . . . . . . 8 (𝜑 → if(𝐴 ≤ 0, 0, 𝐴) < 1)
6659, 65eqbrtrd 5170 . . . . . . 7 (𝜑 → (abs‘if(𝐴 ≤ 0, 0, 𝐴)) < 1)
67 oveq2 7439 . . . . . . . . 9 (𝑛 = 𝑘 → (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
68 ovex 7464 . . . . . . . . 9 (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘) ∈ V
6967, 35, 68fvmpt 7016 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7069adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))‘𝑘) = (if(𝐴 ≤ 0, 0, 𝐴)↑𝑘))
7156, 66, 70geolim 15903 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
72 seqex 14041 . . . . . . 7 seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V
73 climshft 15609 . . . . . . 7 ((𝑁 ∈ ℤ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ∈ V) → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
746, 72, 73sylancl 586 . . . . . 6 (𝜑 → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴)))))
7571, 74mpbird 257 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))))
76 ovex 7464 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ V
77 ovex 7464 . . . . . 6 (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) ∈ V
7876, 77breldm 5922 . . . . 5 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ⇝ (1 / (1 − if(𝐴 ≤ 0, 0, 𝐴))) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
7975, 78syl 17 . . . 4 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑𝑛))) shift 𝑁) ∈ dom ⇝ )
8055, 79eqeltrd 2839 . . 3 (𝜑 → seq𝑁( + , (𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ∈ dom ⇝ )
81 fveq2 6907 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
8281eleq1d 2824 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
8331ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
8482, 83, 2rspcdva 3623 . . . 4 (𝜑 → (𝐹𝑁) ∈ ℂ)
8584abscld 15472 . . 3 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
86 2fveq3 6912 . . . . . . . 8 (𝑛 = 𝑁 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑁)))
87 oveq1 7438 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑁) = (𝑁𝑁))
8887oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑁 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))
8988oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑁 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
9086, 89breq12d 5161 . . . . . . 7 (𝑛 = 𝑁 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)))))
9190imbi2d 340 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))))
92 2fveq3 6912 . . . . . . . 8 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
9311oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
9492, 93breq12d 5161 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
9594imbi2d 340 . . . . . 6 (𝑛 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
96 2fveq3 6912 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (abs‘(𝐹𝑛)) = (abs‘(𝐹‘(𝑘 + 1))))
97 oveq1 7438 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (𝑛𝑁) = ((𝑘 + 1) − 𝑁))
9897oveq2d 7447 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
9998oveq2d 7447 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
10096, 99breq12d 5161 . . . . . . 7 (𝑛 = (𝑘 + 1) → ((abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
101100imbi2d 340 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑛)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
10285leidd 11827 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
10352oveq2d 7447 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑0))
10456exp0d 14177 . . . . . . . . . 10 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑0) = 1)
105103, 104eqtrd 2775 . . . . . . . . 9 (𝜑 → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁)) = 1)
106105oveq2d 7447 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = ((abs‘(𝐹𝑁)) · 1))
10785recnd 11287 . . . . . . . . 9 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℂ)
108107mulridd 11276 . . . . . . . 8 (𝜑 → ((abs‘(𝐹𝑁)) · 1) = (abs‘(𝐹𝑁)))
109106, 108eqtrd 2775 . . . . . . 7 (𝜑 → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))) = (abs‘(𝐹𝑁)))
110102, 109breqtrrd 5176 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑁𝑁))))
11132abscld 15472 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
11285adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℝ)
113112, 25remulcld 11289 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ)
11458adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))
115 lemul2a 12120 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
116115ex 412 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) ∈ ℝ ∧ 0 ≤ if(𝐴 ≤ 0, 0, 𝐴))) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
117111, 113, 20, 114, 116syl112anc 1373 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))))
11856adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → if(𝐴 ≤ 0, 0, 𝐴) ∈ ℂ)
119107adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ∈ ℂ)
12025recnd 11287 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) ∈ ℂ)
121118, 119, 120mul12d 11468 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
122118, 24expp1d 14184 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
12340, 1eleq2s 2857 . . . . . . . . . . . . . . . . 17 (𝑘𝑊𝑘 ∈ ℂ)
124 ax-1cn 11211 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
125 addsub 11517 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
126124, 125mp3an2 1448 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
127123, 38, 126syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) = ((𝑘𝑁) + 1))
128127oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘𝑁) + 1)))
129118, 120mulcomd 11280 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = ((if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)) · if(𝐴 ≤ 0, 0, 𝐴)))
130122, 128, 1293eqtr4rd 2786 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) = (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))
131130oveq2d 7447 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
132121, 131eqtrd 2775 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))
133132breq2d 5160 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) ↔ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
134117, 133sylibd 239 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
135 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
136135eleq1d 2824 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
137 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
138137eleq1d 2824 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
139138cbvralvw 3235 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
14083, 139sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
141140adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1421peano2uzs 12942 . . . . . . . . . . . . . . 15 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14329sselda 3995 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝑘 + 1) ∈ 𝑍)
144142, 143sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ 𝑍)
145136, 141, 144rspcdva 3623 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
146145abscld 15472 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
14717adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
148147, 111remulcld 11289 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
14920, 111remulcld 11289 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ)
150 cvgrat.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
15132absge0d 15480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 0 ≤ (abs‘(𝐹𝑘)))
152 max1 13224 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
15317, 16, 152sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
154153adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → 𝐴 ≤ if(𝐴 ≤ 0, 0, 𝐴))
155147, 20, 111, 151, 154lemul1ad 12205 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
156146, 148, 149, 150, 155letrd 11416 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))))
157 peano2uz 12941 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑁) → (𝑘 + 1) ∈ (ℤ𝑁))
15822, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑘 + 1) ∈ (ℤ𝑁))
159 uznn0sub 12915 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ (ℤ𝑁) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
160158, 159syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑊) → ((𝑘 + 1) − 𝑁) ∈ ℕ0)
16120, 160reexpcld 14200 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)) ∈ ℝ)
162112, 161remulcld 11289 . . . . . . . . . . . 12 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ)
163 letr 11353 . . . . . . . . . . . 12 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
164146, 149, 162, 163syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ∧ (if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
165156, 164mpand 695 . . . . . . . . . 10 ((𝜑𝑘𝑊) → ((if(𝐴 ≤ 0, 0, 𝐴) · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
166134, 165syld 47 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
16746, 166syldan 591 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁)))))
168167expcom 413 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
169168a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑((𝑘 + 1) − 𝑁))))))
17091, 95, 101, 95, 110, 169uzind4i 12950 . . . . 5 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁)))))
171170impcom 407 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
17247oveq2d 7447 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)) = ((abs‘(𝐹𝑁)) · (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑘𝑁))))
173171, 172breqtrrd 5176 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑁)) · ((𝑛𝑊 ↦ (if(𝐴 ≤ 0, 0, 𝐴)↑(𝑛𝑁)))‘𝑘)))
1741, 9, 26, 32, 80, 85, 173cvgcmpce 15851 . 2 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1753, 2, 31iserex 15690 . 2 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
176174, 175mpbird 257 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  0cn0 12524  cz 12611  cuz 12876  seqcseq 14039  cexp 14099   shift cshi 15102  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720
This theorem is referenced by:  efcllem  16110  cvgdvgrat  44309
  Copyright terms: Public domain W3C validator