![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isershft | Structured version Visualization version GIF version |
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
isershft.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
isershft | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zaddcl 12655 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
2 | isershft.1 | . . . . . 6 ⊢ 𝐹 ∈ V | |
3 | 2 | seqshft 15121 | . . . . 5 ⊢ (((𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
4 | 1, 3 | sylancom 588 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
5 | zcn 12616 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
6 | zcn 12616 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | pncan 11512 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | |
8 | 5, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
9 | 8 | seqeq1d 14045 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹)) |
10 | 9 | oveq1d 7446 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁)) |
11 | 4, 10 | eqtrd 2775 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁)) |
12 | 11 | breq1d 5158 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴)) |
13 | seqex 14041 | . . . 4 ⊢ seq𝑀( + , 𝐹) ∈ V | |
14 | climshft 15609 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) | |
15 | 13, 14 | mpan2 691 | . . 3 ⊢ (𝑁 ∈ ℤ → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
16 | 15 | adantl 481 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
17 | 12, 16 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 (class class class)co 7431 ℂcc 11151 + caddc 11156 − cmin 11490 ℤcz 12611 seqcseq 14039 shift cshi 15102 ⇝ cli 15517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-seq 14040 df-shft 15103 df-clim 15521 |
This theorem is referenced by: isumshft 15872 geolim3 26396 dvradcnv 26479 abelthlem6 26495 |
Copyright terms: Public domain | W3C validator |