MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isershft Structured version   Visualization version   GIF version

Theorem isershft 15609
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
isershft.1 𝐹 ∈ V
Assertion
Ref Expression
isershft ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))

Proof of Theorem isershft
StepHypRef Expression
1 zaddcl 12601 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
2 isershft.1 . . . . . 6 𝐹 ∈ V
32seqshft 15031 . . . . 5 (((𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁))
41, 3sylancom 588 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁))
5 zcn 12562 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6 zcn 12562 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 pncan 11465 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
85, 6, 7syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
98seqeq1d 13971 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹))
109oveq1d 7423 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁))
114, 10eqtrd 2772 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁))
1211breq1d 5158 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴))
13 seqex 13967 . . . 4 seq𝑀( + , 𝐹) ∈ V
14 climshft 15519 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
1513, 14mpan2 689 . . 3 (𝑁 ∈ ℤ → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
1615adantl 482 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴))
1712, 16bitr2d 279 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474   class class class wbr 5148  (class class class)co 7408  cc 11107   + caddc 11112  cmin 11443  cz 12557  seqcseq 13965   shift cshi 15012  cli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-seq 13966  df-shft 15013  df-clim 15431
This theorem is referenced by:  isumshft  15784  geolim3  25851  dvradcnv  25932  abelthlem6  25947
  Copyright terms: Public domain W3C validator