| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isershft | Structured version Visualization version GIF version | ||
| Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| isershft.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| isershft | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zaddcl 12580 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
| 2 | isershft.1 | . . . . . 6 ⊢ 𝐹 ∈ V | |
| 3 | 2 | seqshft 15058 | . . . . 5 ⊢ (((𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
| 4 | 1, 3 | sylancom 588 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁)) |
| 5 | zcn 12541 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 6 | zcn 12541 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | pncan 11434 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
| 9 | 8 | seqeq1d 13979 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 10 | 9 | oveq1d 7405 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq((𝑀 + 𝑁) − 𝑁)( + , 𝐹) shift 𝑁) = (seq𝑀( + , 𝐹) shift 𝑁)) |
| 11 | 4, 10 | eqtrd 2765 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) = (seq𝑀( + , 𝐹) shift 𝑁)) |
| 12 | 11 | breq1d 5120 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴 ↔ (seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴)) |
| 13 | seqex 13975 | . . . 4 ⊢ seq𝑀( + , 𝐹) ∈ V | |
| 14 | climshft 15549 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) | |
| 15 | 13, 14 | mpan2 691 | . . 3 ⊢ (𝑁 ∈ ℤ → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq𝑀( + , 𝐹) shift 𝑁) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) |
| 17 | 12, 16 | bitr2d 280 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 + caddc 11078 − cmin 11412 ℤcz 12536 seqcseq 13973 shift cshi 15039 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 df-shft 15040 df-clim 15461 |
| This theorem is referenced by: isumshft 15812 geolim3 26254 dvradcnv 26337 abelthlem6 26353 |
| Copyright terms: Public domain | W3C validator |