MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2 Structured version   Visualization version   GIF version

Theorem bcn2 13487
Description: Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))

Proof of Theorem bcn2
StepHypRef Expression
1 2nn 11506 . . 3 2 ∈ ℕ
2 bcval5 13486 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
31, 2mpan2 678 . 2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
4 2m1e1 11566 . . . . . . . 8 (2 − 1) = 1
54oveq2i 6981 . . . . . . 7 ((𝑁 − 2) + (2 − 1)) = ((𝑁 − 2) + 1)
6 nn0cn 11711 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
7 2cn 11508 . . . . . . . . 9 2 ∈ ℂ
8 ax-1cn 10385 . . . . . . . . 9 1 ∈ ℂ
9 npncan 10700 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
107, 8, 9mp3an23 1432 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
116, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
125, 11syl5eqr 2822 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + 1) = (𝑁 − 1))
1312seqeq1d 13183 . . . . 5 (𝑁 ∈ ℕ0 → seq((𝑁 − 2) + 1)( · , I ) = seq(𝑁 − 1)( · , I ))
1413fveq1d 6495 . . . 4 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (seq(𝑁 − 1)( · , I )‘𝑁))
15 nn0z 11811 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
16 peano2zm 11831 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
18 uzid 12066 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
1915, 18syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
20 npcan 10688 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
216, 8, 20sylancl 577 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
2221fveq2d 6497 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
2319, 22eleqtrrd 2863 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
24 seqm1 13195 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
2517, 23, 24syl2anc 576 . . . . . 6 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
26 seq1 13190 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
2717, 26syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
28 fvi 6562 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
2917, 28syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3027, 29eqtrd 2808 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = (𝑁 − 1))
31 fvi 6562 . . . . . . 7 (𝑁 ∈ ℕ0 → ( I ‘𝑁) = 𝑁)
3230, 31oveq12d 6988 . . . . . 6 (𝑁 ∈ ℕ0 → ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)) = ((𝑁 − 1) · 𝑁))
3325, 32eqtrd 2808 . . . . 5 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((𝑁 − 1) · 𝑁))
34 subcl 10677 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
356, 8, 34sylancl 577 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
3635, 6mulcomd 10453 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) · 𝑁) = (𝑁 · (𝑁 − 1)))
3733, 36eqtrd 2808 . . . 4 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
3814, 37eqtrd 2808 . . 3 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
39 fac2 13447 . . . 4 (!‘2) = 2
4039a1i 11 . . 3 (𝑁 ∈ ℕ0 → (!‘2) = 2)
4138, 40oveq12d 6988 . 2 (𝑁 ∈ ℕ0 → ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)) = ((𝑁 · (𝑁 − 1)) / 2))
423, 41eqtrd 2808 1 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048   I cid 5304  cfv 6182  (class class class)co 6970  cc 10325  1c1 10328   + caddc 10330   · cmul 10332  cmin 10662   / cdiv 11090  cn 11431  2c2 11488  0cn0 11700  cz 11786  cuz 12051  seqcseq 13177  !cfa 13441  Ccbc 13470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-fz 12702  df-seq 13178  df-fac 13442  df-bc 13471
This theorem is referenced by:  bcp1m1  13488  bpoly3  15262
  Copyright terms: Public domain W3C validator