MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2 Structured version   Visualization version   GIF version

Theorem bcn2 14219
Description: Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))

Proof of Theorem bcn2
StepHypRef Expression
1 2nn 12226 . . 3 2 ∈ ℕ
2 bcval5 14218 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
31, 2mpan2 689 . 2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
4 2m1e1 12279 . . . . . . . 8 (2 − 1) = 1
54oveq2i 7368 . . . . . . 7 ((𝑁 − 2) + (2 − 1)) = ((𝑁 − 2) + 1)
6 nn0cn 12423 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
7 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
8 ax-1cn 11109 . . . . . . . . 9 1 ∈ ℂ
9 npncan 11422 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
107, 8, 9mp3an23 1453 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
116, 10syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
125, 11eqtr3id 2790 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + 1) = (𝑁 − 1))
1312seqeq1d 13912 . . . . 5 (𝑁 ∈ ℕ0 → seq((𝑁 − 2) + 1)( · , I ) = seq(𝑁 − 1)( · , I ))
1413fveq1d 6844 . . . 4 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (seq(𝑁 − 1)( · , I )‘𝑁))
15 nn0z 12524 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
16 peano2zm 12546 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
18 uzid 12778 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
1915, 18syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
20 npcan 11410 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
216, 8, 20sylancl 586 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
2221fveq2d 6846 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
2319, 22eleqtrrd 2841 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
24 seqm1 13925 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
2517, 23, 24syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
26 seq1 13919 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
2717, 26syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
28 fvi 6917 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
2917, 28syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3027, 29eqtrd 2776 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = (𝑁 − 1))
31 fvi 6917 . . . . . . 7 (𝑁 ∈ ℕ0 → ( I ‘𝑁) = 𝑁)
3230, 31oveq12d 7375 . . . . . 6 (𝑁 ∈ ℕ0 → ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)) = ((𝑁 − 1) · 𝑁))
3325, 32eqtrd 2776 . . . . 5 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((𝑁 − 1) · 𝑁))
34 subcl 11400 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
356, 8, 34sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
3635, 6mulcomd 11176 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) · 𝑁) = (𝑁 · (𝑁 − 1)))
3733, 36eqtrd 2776 . . . 4 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
3814, 37eqtrd 2776 . . 3 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
39 fac2 14179 . . . 4 (!‘2) = 2
4039a1i 11 . . 3 (𝑁 ∈ ℕ0 → (!‘2) = 2)
4138, 40oveq12d 7375 . 2 (𝑁 ∈ ℕ0 → ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)) = ((𝑁 · (𝑁 − 1)) / 2))
423, 41eqtrd 2776 1 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106   I cid 5530  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  seqcseq 13906  !cfa 14173  Ccbc 14202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-fac 14174  df-bc 14203
This theorem is referenced by:  bcp1m1  14220  bpoly3  15941
  Copyright terms: Public domain W3C validator