MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgtail Structured version   Visualization version   GIF version

Theorem ntrivcvgtail 15785
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgtail.1 𝑍 = (ℤ𝑀)
ntrivcvgtail.2 (𝜑𝑁𝑍)
ntrivcvgtail.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgtail.4 (𝜑𝑋 ≠ 0)
ntrivcvgtail.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgtail (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ntrivcvgtail
StepHypRef Expression
1 fclim 15435 . . . . . . . 8 ⇝ :dom ⇝ ⟶ℂ
2 ffun 6671 . . . . . . . 8 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
31, 2ax-mp 5 . . . . . . 7 Fun ⇝
4 ntrivcvgtail.3 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
5 funbrfv 6893 . . . . . . 7 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋))
63, 4, 5mpsyl 68 . . . . . 6 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
7 ntrivcvgtail.4 . . . . . 6 (𝜑𝑋 ≠ 0)
86, 7eqnetrd 3011 . . . . 5 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0)
94, 6breqtrrd 5133 . . . . 5 (𝜑 → seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))
108, 9jca 512 . . . 4 (𝜑 → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1110adantr 481 . . 3 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
12 seqeq1 13909 . . . . . . 7 (𝑁 = 𝑀 → seq𝑁( · , 𝐹) = seq𝑀( · , 𝐹))
1312fveq2d 6846 . . . . . 6 (𝑁 = 𝑀 → ( ⇝ ‘seq𝑁( · , 𝐹)) = ( ⇝ ‘seq𝑀( · , 𝐹)))
1413neeq1d 3003 . . . . 5 (𝑁 = 𝑀 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0))
1512, 13breq12d 5118 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)) ↔ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1614, 15anbi12d 631 . . . 4 (𝑁 = 𝑀 → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1716adantl 482 . . 3 ((𝜑𝑁 = 𝑀) → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1811, 17mpbird 256 . 2 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
19 ntrivcvgtail.1 . . . . . 6 𝑍 = (ℤ𝑀)
20 simpr 485 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
2120, 19eleqtrrdi 2849 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
22 ntrivcvgtail.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2322adantlr 713 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
244adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq𝑀( · , 𝐹) ⇝ 𝑋)
257adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ≠ 0)
2619, 21, 24, 25, 23ntrivcvgfvn0 15784 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ≠ 0)
2719, 21, 23, 24, 26clim2div 15774 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
28 funbrfv 6893 . . . . 5 (Fun ⇝ → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1)))))
293, 27, 28mpsyl 68 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
30 climcl 15381 . . . . . . 7 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ ℂ)
314, 30syl 17 . . . . . 6 (𝜑𝑋 ∈ ℂ)
3231adantr 481 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ∈ ℂ)
33 ntrivcvgtail.2 . . . . . . . . 9 (𝜑𝑁𝑍)
34 eluzel2 12768 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3534, 19eleq2s 2856 . . . . . . . . 9 (𝑁𝑍𝑀 ∈ ℤ)
3633, 35syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
3719, 36, 22prodf 15772 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
3819feq2i 6660 . . . . . . 7 (seq𝑀( · , 𝐹):𝑍⟶ℂ ↔ seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3937, 38sylib 217 . . . . . 6 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4039ffvelcdmda 7035 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ∈ ℂ)
4132, 40, 25, 26divne0d 11947 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) ≠ 0)
4229, 41eqnetrd 3011 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0)
4327, 29breqtrrd 5133 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)))
44 uzssz 12784 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
4519, 44eqsstri 3978 . . . . . . . . . . 11 𝑍 ⊆ ℤ
4645, 33sselid 3942 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4746zcnd 12608 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
4847adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
49 1cnd 11150 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 1 ∈ ℂ)
5048, 49npcand 11516 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
5150seqeq1d 13912 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) = seq𝑁( · , 𝐹))
5251fveq2d 6846 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = ( ⇝ ‘seq𝑁( · , 𝐹)))
5352neeq1d 3003 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0))
5451, 52breq12d 5118 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ↔ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5553, 54anbi12d 631 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ∧ seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹))) ↔ (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)))))
5642, 43, 55mpbi2and 710 . 2 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5733, 19eleqtrdi 2848 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
58 uzm1 12801 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
5957, 58syl 17 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
6018, 56, 59mpjaodan 957 1 (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  dom cdm 5633  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  cz 12499  cuz 12763  seqcseq 13906  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370
This theorem is referenced by:  ntrivcvgmullem  15786
  Copyright terms: Public domain W3C validator