MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgtail Structured version   Visualization version   GIF version

Theorem ntrivcvgtail 15873
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgtail.1 𝑍 = (ℤ𝑀)
ntrivcvgtail.2 (𝜑𝑁𝑍)
ntrivcvgtail.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgtail.4 (𝜑𝑋 ≠ 0)
ntrivcvgtail.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgtail (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ntrivcvgtail
StepHypRef Expression
1 fclim 15526 . . . . . . . 8 ⇝ :dom ⇝ ⟶ℂ
2 ffun 6694 . . . . . . . 8 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
31, 2ax-mp 5 . . . . . . 7 Fun ⇝
4 ntrivcvgtail.3 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
5 funbrfv 6912 . . . . . . 7 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋))
63, 4, 5mpsyl 68 . . . . . 6 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
7 ntrivcvgtail.4 . . . . . 6 (𝜑𝑋 ≠ 0)
86, 7eqnetrd 2993 . . . . 5 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0)
94, 6breqtrrd 5138 . . . . 5 (𝜑 → seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))
108, 9jca 511 . . . 4 (𝜑 → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1110adantr 480 . . 3 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
12 seqeq1 13976 . . . . . . 7 (𝑁 = 𝑀 → seq𝑁( · , 𝐹) = seq𝑀( · , 𝐹))
1312fveq2d 6865 . . . . . 6 (𝑁 = 𝑀 → ( ⇝ ‘seq𝑁( · , 𝐹)) = ( ⇝ ‘seq𝑀( · , 𝐹)))
1413neeq1d 2985 . . . . 5 (𝑁 = 𝑀 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0))
1512, 13breq12d 5123 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)) ↔ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1614, 15anbi12d 632 . . . 4 (𝑁 = 𝑀 → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1716adantl 481 . . 3 ((𝜑𝑁 = 𝑀) → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1811, 17mpbird 257 . 2 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
19 ntrivcvgtail.1 . . . . . 6 𝑍 = (ℤ𝑀)
20 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
2120, 19eleqtrrdi 2840 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
22 ntrivcvgtail.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2322adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
244adantr 480 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq𝑀( · , 𝐹) ⇝ 𝑋)
257adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ≠ 0)
2619, 21, 24, 25, 23ntrivcvgfvn0 15872 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ≠ 0)
2719, 21, 23, 24, 26clim2div 15862 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
28 funbrfv 6912 . . . . 5 (Fun ⇝ → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1)))))
293, 27, 28mpsyl 68 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
30 climcl 15472 . . . . . . 7 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ ℂ)
314, 30syl 17 . . . . . 6 (𝜑𝑋 ∈ ℂ)
3231adantr 480 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ∈ ℂ)
33 ntrivcvgtail.2 . . . . . . . . 9 (𝜑𝑁𝑍)
34 eluzel2 12805 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3534, 19eleq2s 2847 . . . . . . . . 9 (𝑁𝑍𝑀 ∈ ℤ)
3633, 35syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
3719, 36, 22prodf 15860 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
3819feq2i 6683 . . . . . . 7 (seq𝑀( · , 𝐹):𝑍⟶ℂ ↔ seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3937, 38sylib 218 . . . . . 6 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4039ffvelcdmda 7059 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ∈ ℂ)
4132, 40, 25, 26divne0d 11981 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) ≠ 0)
4229, 41eqnetrd 2993 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0)
4327, 29breqtrrd 5138 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)))
44 uzssz 12821 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
4519, 44eqsstri 3996 . . . . . . . . . . 11 𝑍 ⊆ ℤ
4645, 33sselid 3947 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4746zcnd 12646 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
4847adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
49 1cnd 11176 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 1 ∈ ℂ)
5048, 49npcand 11544 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
5150seqeq1d 13979 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) = seq𝑁( · , 𝐹))
5251fveq2d 6865 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = ( ⇝ ‘seq𝑁( · , 𝐹)))
5352neeq1d 2985 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0))
5451, 52breq12d 5123 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ↔ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5553, 54anbi12d 632 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ∧ seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹))) ↔ (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)))))
5642, 43, 55mpbi2and 712 . 2 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5733, 19eleqtrdi 2839 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
58 uzm1 12838 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
5957, 58syl 17 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
6018, 56, 59mpjaodan 960 1 (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  dom cdm 5641  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  cz 12536  cuz 12800  seqcseq 13973  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by:  ntrivcvgmullem  15874
  Copyright terms: Public domain W3C validator