![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snfbas | Structured version Visualization version GIF version |
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
snfbas | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5324 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | 3adant2 1128 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
3 | simp2 1134 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ≠ ∅) | |
4 | snfil 23812 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) | |
5 | 2, 3, 4 | syl2anc 582 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (Fil‘𝐴)) |
6 | filfbas 23796 | . . 3 ⊢ ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐴)) |
8 | simp1 1133 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ 𝐵) | |
9 | elpw2g 5347 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
10 | 9 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
11 | 8, 10 | mpbird 256 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
12 | 11 | snssd 4814 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ⊆ 𝒫 𝐵) |
13 | simp3 1135 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
14 | fbasweak 23813 | . 2 ⊢ (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) | |
15 | 7, 12, 13, 14 | syl3anc 1368 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2929 Vcvv 3461 ⊆ wss 3944 ∅c0 4322 𝒫 cpw 4604 {csn 4630 ‘cfv 6549 fBascfbas 21284 Filcfil 23793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fv 6557 df-fbas 21293 df-fil 23794 |
This theorem is referenced by: isufil2 23856 ufileu 23867 filufint 23868 uffix 23869 flimclslem 23932 |
Copyright terms: Public domain | W3C validator |