MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfbas Structured version   Visualization version   GIF version

Theorem snfbas 23899
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfbas ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))

Proof of Theorem snfbas
StepHypRef Expression
1 ssexg 5332 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
213adant2 1132 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ∈ V)
3 simp2 1138 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ≠ ∅)
4 snfil 23897 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴))
52, 3, 4syl2anc 584 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (Fil‘𝐴))
6 filfbas 23881 . . 3 ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴))
75, 6syl 17 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐴))
8 simp1 1137 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴𝐵)
9 elpw2g 5342 . . . . 5 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
1093ad2ant3 1136 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
118, 10mpbird 257 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ∈ 𝒫 𝐵)
1211snssd 4817 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ⊆ 𝒫 𝐵)
13 simp3 1139 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐵𝑉)
14 fbasweak 23898 . 2 (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
157, 12, 13, 14syl3anc 1372 1 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wcel 2108  wne 2940  Vcvv 3481  wss 3966  c0 4342  𝒫 cpw 4608  {csn 4634  cfv 6569  fBascfbas 21379  Filcfil 23878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fv 6577  df-fbas 21388  df-fil 23879
This theorem is referenced by:  isufil2  23941  ufileu  23952  filufint  23953  uffix  23954  flimclslem  24017
  Copyright terms: Public domain W3C validator