![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snfbas | Structured version Visualization version GIF version |
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
snfbas | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5341 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
3 | simp2 1137 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ≠ ∅) | |
4 | snfil 23893 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (Fil‘𝐴)) |
6 | filfbas 23877 | . . 3 ⊢ ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐴)) |
8 | simp1 1136 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ 𝐵) | |
9 | elpw2g 5351 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
10 | 9 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
11 | 8, 10 | mpbird 257 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
12 | 11 | snssd 4834 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ⊆ 𝒫 𝐵) |
13 | simp3 1138 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
14 | fbasweak 23894 | . 2 ⊢ (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) | |
15 | 7, 12, 13, 14 | syl3anc 1371 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 fBascfbas 21375 Filcfil 23874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-fbas 21384 df-fil 23875 |
This theorem is referenced by: isufil2 23937 ufileu 23948 filufint 23949 uffix 23950 flimclslem 24013 |
Copyright terms: Public domain | W3C validator |