| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snfbas | Structured version Visualization version GIF version | ||
| Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| snfbas | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5256 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 2 | 1 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ≠ ∅) | |
| 4 | snfil 23774 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (Fil‘𝐴)) |
| 6 | filfbas 23758 | . . 3 ⊢ ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐴)) |
| 8 | simp1 1136 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ 𝐵) | |
| 9 | elpw2g 5266 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 10 | 9 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 11 | 8, 10 | mpbird 257 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
| 12 | 11 | snssd 4756 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ⊆ 𝒫 𝐵) |
| 13 | simp3 1138 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 14 | fbasweak 23775 | . 2 ⊢ (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) | |
| 15 | 7, 12, 13, 14 | syl3anc 1373 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 𝒫 cpw 4545 {csn 4571 ‘cfv 6476 fBascfbas 21274 Filcfil 23755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-fbas 21283 df-fil 23756 |
| This theorem is referenced by: isufil2 23818 ufileu 23829 filufint 23830 uffix 23831 flimclslem 23894 |
| Copyright terms: Public domain | W3C validator |