MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfbas Structured version   Visualization version   GIF version

Theorem snfbas 22089
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfbas ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))

Proof of Theorem snfbas
StepHypRef Expression
1 ssexg 5043 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
213adant2 1122 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ∈ V)
3 simp2 1128 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ≠ ∅)
4 snfil 22087 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴))
52, 3, 4syl2anc 579 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (Fil‘𝐴))
6 filfbas 22071 . . 3 ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴))
75, 6syl 17 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐴))
8 simp1 1127 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴𝐵)
9 elpw2g 5063 . . . . 5 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
1093ad2ant3 1126 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
118, 10mpbird 249 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ∈ 𝒫 𝐵)
1211snssd 4573 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ⊆ 𝒫 𝐵)
13 simp3 1129 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐵𝑉)
14 fbasweak 22088 . 2 (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
157, 12, 13, 14syl3anc 1439 1 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1071  wcel 2107  wne 2969  Vcvv 3398  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398  cfv 6137  fBascfbas 20141  Filcfil 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fv 6145  df-fbas 20150  df-fil 22069
This theorem is referenced by:  isufil2  22131  ufileu  22142  filufint  22143  uffix  22144  flimclslem  22207
  Copyright terms: Public domain W3C validator