MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfbas Structured version   Visualization version   GIF version

Theorem snfbas 23590
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfbas ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))

Proof of Theorem snfbas
StepHypRef Expression
1 ssexg 5323 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
213adant2 1131 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ∈ V)
3 simp2 1137 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ≠ ∅)
4 snfil 23588 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴))
52, 3, 4syl2anc 584 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (Fil‘𝐴))
6 filfbas 23572 . . 3 ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴))
75, 6syl 17 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐴))
8 simp1 1136 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴𝐵)
9 elpw2g 5344 . . . . 5 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
1093ad2ant3 1135 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
118, 10mpbird 256 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐴 ∈ 𝒫 𝐵)
1211snssd 4812 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ⊆ 𝒫 𝐵)
13 simp3 1138 . 2 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → 𝐵𝑉)
14 fbasweak 23589 . 2 (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
157, 12, 13, 14syl3anc 1371 1 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087  wcel 2106  wne 2940  Vcvv 3474  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628  cfv 6543  fBascfbas 21132  Filcfil 23569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-fbas 21141  df-fil 23570
This theorem is referenced by:  isufil2  23632  ufileu  23643  filufint  23644  uffix  23645  flimclslem  23708
  Copyright terms: Public domain W3C validator