![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snfbas | Structured version Visualization version GIF version |
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
snfbas | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5043 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | 3adant2 1122 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
3 | simp2 1128 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ≠ ∅) | |
4 | snfil 22087 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) | |
5 | 2, 3, 4 | syl2anc 579 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (Fil‘𝐴)) |
6 | filfbas 22071 | . . 3 ⊢ ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐴)) |
8 | simp1 1127 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ 𝐵) | |
9 | elpw2g 5063 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
10 | 9 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
11 | 8, 10 | mpbird 249 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
12 | 11 | snssd 4573 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ⊆ 𝒫 𝐵) |
13 | simp3 1129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
14 | fbasweak 22088 | . 2 ⊢ (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) | |
15 | 7, 12, 13, 14 | syl3anc 1439 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1071 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ⊆ wss 3792 ∅c0 4141 𝒫 cpw 4379 {csn 4398 ‘cfv 6137 fBascfbas 20141 Filcfil 22068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fv 6145 df-fbas 20150 df-fil 22069 |
This theorem is referenced by: isufil2 22131 ufileu 22142 filufint 22143 uffix 22144 flimclslem 22207 |
Copyright terms: Public domain | W3C validator |