MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasweak Structured version   Visualization version   GIF version

Theorem fbasweak 22088
Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasweak ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑌))

Proof of Theorem fbasweak
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1128 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ⊆ 𝒫 𝑌)
2 simp1 1127 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑋))
3 elfvdm 6480 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
433ad2ant1 1124 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝑋 ∈ dom fBas)
5 isfbas 22052 . . . . 5 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
64, 5syl 17 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
72, 6mpbid 224 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
87simprd 491 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
9 isfbas 22052 . . 3 (𝑌𝑉 → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1093ad2ant3 1126 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
111, 8, 10mpbir2and 703 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wcel 2107  wne 2969  wnel 3075  wral 3090  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  dom cdm 5357  cfv 6137  fBascfbas 20141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fv 6145  df-fbas 20150
This theorem is referenced by:  snfbas  22089  fgabs  22102  fgtr  22113  trfg  22114  ssufl  22141  cfiluweak  22518  cfilresi  23512  cmetss  23533  minveclem4a  23647  minveclem4  23649
  Copyright terms: Public domain W3C validator