| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbasweak | Structured version Visualization version GIF version | ||
| Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fbasweak | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1138 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝑌) | |
| 2 | simp1 1137 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) | |
| 3 | elfvdm 6943 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 4 | 3 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ dom fBas) |
| 5 | isfbas 23837 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 7 | 2, 6 | mpbid 232 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 8 | 7 | simprd 495 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
| 9 | isfbas 23837 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 10 | 9 | 3ad2ant3 1136 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 11 | 1, 8, 10 | mpbir2and 713 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2940 ∉ wnel 3046 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 dom cdm 5685 ‘cfv 6561 fBascfbas 21352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-fbas 21361 |
| This theorem is referenced by: snfbas 23874 fgabs 23887 fgtr 23898 trfg 23899 ssufl 23926 cfiluweak 24304 cfilresi 25329 cmetss 25350 minveclem4a 25464 minveclem4 25466 |
| Copyright terms: Public domain | W3C validator |