| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbasweak | Structured version Visualization version GIF version | ||
| Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fbasweak | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝑌) | |
| 2 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) | |
| 3 | elfvdm 6861 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 4 | 3 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ dom fBas) |
| 5 | isfbas 23732 | . . . . 5 ⊢ (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 7 | 2, 6 | mpbid 232 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 8 | 7 | simprd 495 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
| 9 | isfbas 23732 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 10 | 9 | 3ad2ant3 1135 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 11 | 1, 8, 10 | mpbir2and 713 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∀wral 3044 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 dom cdm 5623 ‘cfv 6486 fBascfbas 21267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-fbas 21276 |
| This theorem is referenced by: snfbas 23769 fgabs 23782 fgtr 23793 trfg 23794 ssufl 23821 cfiluweak 24198 cfilresi 25211 cmetss 25232 minveclem4a 25346 minveclem4 25348 |
| Copyright terms: Public domain | W3C validator |