MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsubbas Structured version   Visualization version   GIF version

Theorem fsubbas 23016
Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fsubbas (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))

Proof of Theorem fsubbas
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbasne0 22979 . . . . . 6 ((fi‘𝐴) ∈ (fBas‘𝑋) → (fi‘𝐴) ≠ ∅)
2 fvprc 6763 . . . . . . 7 𝐴 ∈ V → (fi‘𝐴) = ∅)
32necon1ai 2973 . . . . . 6 ((fi‘𝐴) ≠ ∅ → 𝐴 ∈ V)
41, 3syl 17 . . . . 5 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ∈ V)
5 ssfii 9156 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
64, 5syl 17 . . . 4 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ⊆ (fi‘𝐴))
7 fbsspw 22981 . . . 4 ((fi‘𝐴) ∈ (fBas‘𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
86, 7sstrd 3936 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ⊆ 𝒫 𝑋)
9 fieq0 9158 . . . . . 6 (𝐴 ∈ V → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
109necon3bid 2990 . . . . 5 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ (fi‘𝐴) ≠ ∅))
1110biimpar 478 . . . 4 ((𝐴 ∈ V ∧ (fi‘𝐴) ≠ ∅) → 𝐴 ≠ ∅)
124, 1, 11syl2anc 584 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ≠ ∅)
13 0nelfb 22980 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐴))
148, 12, 133jca 1127 . 2 ((fi‘𝐴) ∈ (fBas‘𝑋) → (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)))
15 simpr1 1193 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ⊆ 𝒫 𝑋)
16 fipwss 9166 . . . . 5 (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)
1715, 16syl 17 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ⊆ 𝒫 𝑋)
18 pwexg 5305 . . . . . . . 8 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
1918adantr 481 . . . . . . 7 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝒫 𝑋 ∈ V)
2019, 15ssexd 5252 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ∈ V)
21 simpr2 1194 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ≠ ∅)
2210biimpa 477 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (fi‘𝐴) ≠ ∅)
2320, 21, 22syl2anc 584 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ≠ ∅)
24 simpr3 1195 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ¬ ∅ ∈ (fi‘𝐴))
25 df-nel 3052 . . . . . 6 (∅ ∉ (fi‘𝐴) ↔ ¬ ∅ ∈ (fi‘𝐴))
2624, 25sylibr 233 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ∅ ∉ (fi‘𝐴))
27 fiin 9159 . . . . . . . 8 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
28 ssid 3948 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
29 sseq1 3951 . . . . . . . . 9 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
3029rspcev 3561 . . . . . . . 8 (((𝑥𝑦) ∈ (fi‘𝐴) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3127, 28, 30sylancl 586 . . . . . . 7 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → ∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3231rgen2 3129 . . . . . 6 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)
3332a1i 11 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3423, 26, 333jca 1127 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))
35 isfbas2 22984 . . . . 5 (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ ((fi‘𝐴) ⊆ 𝒫 𝑋 ∧ ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))))
3635adantr 481 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ ((fi‘𝐴) ⊆ 𝒫 𝑋 ∧ ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))))
3717, 34, 36mpbir2and 710 . . 3 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ∈ (fBas‘𝑋))
3837ex 413 . 2 (𝑋𝑉 → ((𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ (fBas‘𝑋)))
3914, 38impbid2 225 1 (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wcel 2110  wne 2945  wnel 3051  wral 3066  wrex 3067  Vcvv 3431  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  cfv 6432  ficfi 9147  fBascfbas 20583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-om 7707  df-1o 8288  df-er 8481  df-en 8717  df-fin 8720  df-fi 9148  df-fbas 20592
This theorem is referenced by:  isufil2  23057  ufileu  23068  filufint  23069  fmfnfm  23107  hausflim  23130  flimclslem  23133  fclsfnflim  23176  flimfnfcls  23177  fclscmp  23179
  Copyright terms: Public domain W3C validator