MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsubbas Structured version   Visualization version   GIF version

Theorem fsubbas 23896
Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fsubbas (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))

Proof of Theorem fsubbas
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbasne0 23859 . . . . . 6 ((fi‘𝐴) ∈ (fBas‘𝑋) → (fi‘𝐴) ≠ ∅)
2 fvprc 6912 . . . . . . 7 𝐴 ∈ V → (fi‘𝐴) = ∅)
32necon1ai 2974 . . . . . 6 ((fi‘𝐴) ≠ ∅ → 𝐴 ∈ V)
41, 3syl 17 . . . . 5 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ∈ V)
5 ssfii 9488 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
64, 5syl 17 . . . 4 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ⊆ (fi‘𝐴))
7 fbsspw 23861 . . . 4 ((fi‘𝐴) ∈ (fBas‘𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
86, 7sstrd 4019 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ⊆ 𝒫 𝑋)
9 fieq0 9490 . . . . . 6 (𝐴 ∈ V → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
109necon3bid 2991 . . . . 5 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ (fi‘𝐴) ≠ ∅))
1110biimpar 477 . . . 4 ((𝐴 ∈ V ∧ (fi‘𝐴) ≠ ∅) → 𝐴 ≠ ∅)
124, 1, 11syl2anc 583 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ≠ ∅)
13 0nelfb 23860 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐴))
148, 12, 133jca 1128 . 2 ((fi‘𝐴) ∈ (fBas‘𝑋) → (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)))
15 simpr1 1194 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ⊆ 𝒫 𝑋)
16 fipwss 9498 . . . . 5 (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)
1715, 16syl 17 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ⊆ 𝒫 𝑋)
18 pwexg 5396 . . . . . . . 8 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
1918adantr 480 . . . . . . 7 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝒫 𝑋 ∈ V)
2019, 15ssexd 5342 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ∈ V)
21 simpr2 1195 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ≠ ∅)
2210biimpa 476 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (fi‘𝐴) ≠ ∅)
2320, 21, 22syl2anc 583 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ≠ ∅)
24 simpr3 1196 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ¬ ∅ ∈ (fi‘𝐴))
25 df-nel 3053 . . . . . 6 (∅ ∉ (fi‘𝐴) ↔ ¬ ∅ ∈ (fi‘𝐴))
2624, 25sylibr 234 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ∅ ∉ (fi‘𝐴))
27 fiin 9491 . . . . . . . 8 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
28 ssid 4031 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
29 sseq1 4034 . . . . . . . . 9 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
3029rspcev 3635 . . . . . . . 8 (((𝑥𝑦) ∈ (fi‘𝐴) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3127, 28, 30sylancl 585 . . . . . . 7 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → ∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3231rgen2 3205 . . . . . 6 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)
3332a1i 11 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3423, 26, 333jca 1128 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))
35 isfbas2 23864 . . . . 5 (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ ((fi‘𝐴) ⊆ 𝒫 𝑋 ∧ ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))))
3635adantr 480 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ ((fi‘𝐴) ⊆ 𝒫 𝑋 ∧ ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))))
3717, 34, 36mpbir2and 712 . . 3 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ∈ (fBas‘𝑋))
3837ex 412 . 2 (𝑋𝑉 → ((𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ (fBas‘𝑋)))
3914, 38impbid2 226 1 (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  wnel 3052  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cfv 6573  ficfi 9479  fBascfbas 21375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384
This theorem is referenced by:  isufil2  23937  ufileu  23948  filufint  23949  fmfnfm  23987  hausflim  24010  flimclslem  24013  fclsfnflim  24056  flimfnfcls  24057  fclscmp  24059
  Copyright terms: Public domain W3C validator