MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsubbas Structured version   Visualization version   GIF version

Theorem fsubbas 22079
Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fsubbas (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))

Proof of Theorem fsubbas
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbasne0 22042 . . . . . 6 ((fi‘𝐴) ∈ (fBas‘𝑋) → (fi‘𝐴) ≠ ∅)
2 fvprc 6439 . . . . . . 7 𝐴 ∈ V → (fi‘𝐴) = ∅)
32necon1ai 2995 . . . . . 6 ((fi‘𝐴) ≠ ∅ → 𝐴 ∈ V)
41, 3syl 17 . . . . 5 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ∈ V)
5 ssfii 8613 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
64, 5syl 17 . . . 4 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ⊆ (fi‘𝐴))
7 fbsspw 22044 . . . 4 ((fi‘𝐴) ∈ (fBas‘𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
86, 7sstrd 3830 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ⊆ 𝒫 𝑋)
9 fieq0 8615 . . . . . 6 (𝐴 ∈ V → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
109necon3bid 3012 . . . . 5 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ (fi‘𝐴) ≠ ∅))
1110biimpar 471 . . . 4 ((𝐴 ∈ V ∧ (fi‘𝐴) ≠ ∅) → 𝐴 ≠ ∅)
124, 1, 11syl2anc 579 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → 𝐴 ≠ ∅)
13 0nelfb 22043 . . 3 ((fi‘𝐴) ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐴))
148, 12, 133jca 1119 . 2 ((fi‘𝐴) ∈ (fBas‘𝑋) → (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)))
15 simpr1 1205 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ⊆ 𝒫 𝑋)
16 fipwss 8623 . . . . 5 (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)
1715, 16syl 17 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ⊆ 𝒫 𝑋)
18 pwexg 5090 . . . . . . . 8 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
1918adantr 474 . . . . . . 7 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝒫 𝑋 ∈ V)
2019, 15ssexd 5042 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ∈ V)
21 simpr2 1207 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → 𝐴 ≠ ∅)
2210biimpa 470 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (fi‘𝐴) ≠ ∅)
2320, 21, 22syl2anc 579 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ≠ ∅)
24 simpr3 1209 . . . . . 6 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ¬ ∅ ∈ (fi‘𝐴))
25 df-nel 3075 . . . . . 6 (∅ ∉ (fi‘𝐴) ↔ ¬ ∅ ∈ (fi‘𝐴))
2624, 25sylibr 226 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ∅ ∉ (fi‘𝐴))
27 fiin 8616 . . . . . . . 8 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
28 ssid 3841 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
29 sseq1 3844 . . . . . . . . 9 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
3029rspcev 3510 . . . . . . . 8 (((𝑥𝑦) ∈ (fi‘𝐴) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3127, 28, 30sylancl 580 . . . . . . 7 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → ∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3231rgen2a 3158 . . . . . 6 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)
3332a1i 11 . . . . 5 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦))
3423, 26, 333jca 1119 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))
35 isfbas2 22047 . . . . 5 (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ ((fi‘𝐴) ⊆ 𝒫 𝑋 ∧ ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))))
3635adantr 474 . . . 4 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ ((fi‘𝐴) ⊆ 𝒫 𝑋 ∧ ((fi‘𝐴) ≠ ∅ ∧ ∅ ∉ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)∃𝑧 ∈ (fi‘𝐴)𝑧 ⊆ (𝑥𝑦)))))
3717, 34, 36mpbir2and 703 . . 3 ((𝑋𝑉 ∧ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))) → (fi‘𝐴) ∈ (fBas‘𝑋))
3837ex 403 . 2 (𝑋𝑉 → ((𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴)) → (fi‘𝐴) ∈ (fBas‘𝑋)))
3914, 38impbid2 218 1 (𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071  wcel 2106  wne 2968  wnel 3074  wral 3089  wrex 3090  Vcvv 3397  cin 3790  wss 3791  c0 4140  𝒫 cpw 4378  cfv 6135  ficfi 8604  fBascfbas 20130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-fin 8245  df-fi 8605  df-fbas 20139
This theorem is referenced by:  isufil2  22120  ufileu  22131  filufint  22132  fmfnfm  22170  hausflim  22193  flimclslem  22196  fclsfnflim  22239  flimfnfcls  22240  fclscmp  22242
  Copyright terms: Public domain W3C validator