| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelf1o | Structured version Visualization version GIF version | ||
| Description: The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| sprsymrelf.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) |
| Ref | Expression |
|---|---|
| sprsymrelf1o | ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelf.p | . . . 4 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
| 2 | sprsymrelf.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
| 3 | sprsymrelf.f | . . . 4 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
| 4 | 1, 2, 3 | sprsymrelf1 47497 | . . 3 ⊢ 𝐹:𝑃–1-1→𝑅 |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1→𝑅) |
| 6 | 1, 2, 3 | sprsymrelfo 47498 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) |
| 7 | df-f1o 6518 | . 2 ⊢ (𝐹:𝑃–1-1-onto→𝑅 ↔ (𝐹:𝑃–1-1→𝑅 ∧ 𝐹:𝑃–onto→𝑅)) | |
| 8 | 5, 6, 7 | sylanbrc 583 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 𝒫 cpw 4563 {cpr 4591 class class class wbr 5107 {copab 5169 ↦ cmpt 5188 × cxp 5636 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 Pairscspr 47478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-spr 47479 |
| This theorem is referenced by: sprbisymrel 47500 uspgrbisymrelALT 48143 |
| Copyright terms: Public domain | W3C validator |