Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelf1o | Structured version Visualization version GIF version |
Description: The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
Ref | Expression |
---|---|
sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
sprsymrelf.f | ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) |
Ref | Expression |
---|---|
sprsymrelf1o | ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | . . . 4 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
2 | sprsymrelf.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
3 | sprsymrelf.f | . . . 4 ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
4 | 1, 2, 3 | sprsymrelf1 44836 | . . 3 ⊢ 𝐹:𝑃–1-1→𝑅 |
5 | 4 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1→𝑅) |
6 | 1, 2, 3 | sprsymrelfo 44837 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) |
7 | df-f1o 6425 | . 2 ⊢ (𝐹:𝑃–1-1-onto→𝑅 ↔ (𝐹:𝑃–1-1→𝑅 ∧ 𝐹:𝑃–onto→𝑅)) | |
8 | 5, 6, 7 | sylanbrc 582 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 𝒫 cpw 4530 {cpr 4560 class class class wbr 5070 {copab 5132 ↦ cmpt 5153 × cxp 5578 –1-1→wf1 6415 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 Pairscspr 44817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-spr 44818 |
This theorem is referenced by: sprbisymrel 44839 uspgrbisymrelALT 45205 |
Copyright terms: Public domain | W3C validator |