Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprbisymrel Structured version   Visualization version   GIF version

Theorem sprbisymrel 47623
Description: There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
sprbisymrel (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Distinct variable groups:   𝑥,𝑉,𝑦,𝑟   𝑥,𝑓,𝑦   𝑃,𝑓   𝑅,𝑓   𝑉,𝑟   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟)   𝑅(𝑥,𝑦,𝑟)   𝑉(𝑓)   𝑊(𝑓,𝑟)

Proof of Theorem sprbisymrel
Dummy variables 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 fvex 6841 . . . . 5 (Pairs‘𝑉) ∈ V
32pwex 5320 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
41, 3eqeltri 2829 . . 3 𝑃 ∈ V
5 mptexg 7161 . . 3 (𝑃 ∈ V → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
64, 5mp1i 13 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
7 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
8 eqid 2733 . . 3 (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
91, 7, 8sprsymrelf1o 47622 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅)
10 f1oeq1 6756 . . 3 (𝑓 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) → (𝑓:𝑃1-1-onto𝑅 ↔ (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅))
1110spcegv 3548 . 2 ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V → ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅 → ∃𝑓 𝑓:𝑃1-1-onto𝑅))
126, 9, 11sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  𝒫 cpw 4549  {cpr 4577   class class class wbr 5093  {copab 5155  cmpt 5174   × cxp 5617  1-1-ontowf1o 6485  cfv 6486  Pairscspr 47601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-spr 47602
This theorem is referenced by:  sprsymrelen  47624
  Copyright terms: Public domain W3C validator