Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprbisymrel Structured version   Visualization version   GIF version

Theorem sprbisymrel 47529
Description: There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
sprbisymrel (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Distinct variable groups:   𝑥,𝑉,𝑦,𝑟   𝑥,𝑓,𝑦   𝑃,𝑓   𝑅,𝑓   𝑉,𝑟   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟)   𝑅(𝑥,𝑦,𝑟)   𝑉(𝑓)   𝑊(𝑓,𝑟)

Proof of Theorem sprbisymrel
Dummy variables 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 fvex 6835 . . . . 5 (Pairs‘𝑉) ∈ V
32pwex 5318 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
41, 3eqeltri 2827 . . 3 𝑃 ∈ V
5 mptexg 7155 . . 3 (𝑃 ∈ V → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
64, 5mp1i 13 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
7 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
8 eqid 2731 . . 3 (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
91, 7, 8sprsymrelf1o 47528 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅)
10 f1oeq1 6751 . . 3 (𝑓 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) → (𝑓:𝑃1-1-onto𝑅 ↔ (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅))
1110spcegv 3552 . 2 ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V → ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅 → ∃𝑓 𝑓:𝑃1-1-onto𝑅))
126, 9, 11sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  𝒫 cpw 4550  {cpr 4578   class class class wbr 5091  {copab 5153  cmpt 5172   × cxp 5614  1-1-ontowf1o 6480  cfv 6481  Pairscspr 47507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-spr 47508
This theorem is referenced by:  sprsymrelen  47530
  Copyright terms: Public domain W3C validator