Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprbisymrel Structured version   Visualization version   GIF version

Theorem sprbisymrel 47373
Description: There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
sprbisymrel (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Distinct variable groups:   𝑥,𝑉,𝑦,𝑟   𝑥,𝑓,𝑦   𝑃,𝑓   𝑅,𝑓   𝑉,𝑟   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟)   𝑅(𝑥,𝑦,𝑟)   𝑉(𝑓)   𝑊(𝑓,𝑟)

Proof of Theorem sprbisymrel
Dummy variables 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 fvex 6933 . . . . 5 (Pairs‘𝑉) ∈ V
32pwex 5398 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
41, 3eqeltri 2840 . . 3 𝑃 ∈ V
5 mptexg 7258 . . 3 (𝑃 ∈ V → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
64, 5mp1i 13 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
7 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
8 eqid 2740 . . 3 (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
91, 7, 8sprsymrelf1o 47372 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅)
10 f1oeq1 6850 . . 3 (𝑓 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) → (𝑓:𝑃1-1-onto𝑅 ↔ (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅))
1110spcegv 3610 . 2 ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V → ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅 → ∃𝑓 𝑓:𝑃1-1-onto𝑅))
126, 9, 11sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {cpr 4650   class class class wbr 5166  {copab 5228  cmpt 5249   × cxp 5698  1-1-ontowf1o 6572  cfv 6573  Pairscspr 47351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-spr 47352
This theorem is referenced by:  sprsymrelen  47374
  Copyright terms: Public domain W3C validator