Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprbisymrel Structured version   Visualization version   GIF version

Theorem sprbisymrel 46744
Description: There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
sprbisymrel (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Distinct variable groups:   𝑥,𝑉,𝑦,𝑟   𝑥,𝑓,𝑦   𝑃,𝑓   𝑅,𝑓   𝑉,𝑟   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟)   𝑅(𝑥,𝑦,𝑟)   𝑉(𝑓)   𝑊(𝑓,𝑟)

Proof of Theorem sprbisymrel
Dummy variables 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 fvex 6898 . . . . 5 (Pairs‘𝑉) ∈ V
32pwex 5371 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
41, 3eqeltri 2823 . . 3 𝑃 ∈ V
5 mptexg 7218 . . 3 (𝑃 ∈ V → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
64, 5mp1i 13 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
7 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
8 eqid 2726 . . 3 (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
91, 7, 8sprsymrelf1o 46743 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅)
10 f1oeq1 6815 . . 3 (𝑓 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) → (𝑓:𝑃1-1-onto𝑅 ↔ (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅))
1110spcegv 3581 . 2 ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V → ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅 → ∃𝑓 𝑓:𝑃1-1-onto𝑅))
126, 9, 11sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wex 1773  wcel 2098  wral 3055  wrex 3064  {crab 3426  Vcvv 3468  𝒫 cpw 4597  {cpr 4625   class class class wbr 5141  {copab 5203  cmpt 5224   × cxp 5667  1-1-ontowf1o 6536  cfv 6537  Pairscspr 46722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-spr 46723
This theorem is referenced by:  sprsymrelen  46745
  Copyright terms: Public domain W3C validator