Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprbisymrel Structured version   Visualization version   GIF version

Theorem sprbisymrel 46167
Description: There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
sprbisymrel (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Distinct variable groups:   𝑥,𝑉,𝑦,𝑟   𝑥,𝑓,𝑦   𝑃,𝑓   𝑅,𝑓   𝑉,𝑟   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟)   𝑅(𝑥,𝑦,𝑟)   𝑉(𝑓)   𝑊(𝑓,𝑟)

Proof of Theorem sprbisymrel
Dummy variables 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 fvex 6905 . . . . 5 (Pairs‘𝑉) ∈ V
32pwex 5379 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
41, 3eqeltri 2830 . . 3 𝑃 ∈ V
5 mptexg 7223 . . 3 (𝑃 ∈ V → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
64, 5mp1i 13 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
7 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
8 eqid 2733 . . 3 (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
91, 7, 8sprsymrelf1o 46166 . 2 (𝑉𝑊 → (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅)
10 f1oeq1 6822 . . 3 (𝑓 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) → (𝑓:𝑃1-1-onto𝑅 ↔ (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅))
1110spcegv 3588 . 2 ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V → ((𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝑃1-1-onto𝑅 → ∃𝑓 𝑓:𝑃1-1-onto𝑅))
126, 9, 11sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wex 1782  wcel 2107  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  𝒫 cpw 4603  {cpr 4631   class class class wbr 5149  {copab 5211  cmpt 5232   × cxp 5675  1-1-ontowf1o 6543  cfv 6544  Pairscspr 46145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-spr 46146
This theorem is referenced by:  sprsymrelen  46168
  Copyright terms: Public domain W3C validator