![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isspthson | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
pthsonfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isspthson | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsonfval.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | spthson 26994 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}) |
3 | 2 | breqd 4855 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}𝑃)) |
4 | breq12 4849 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ↔ 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)) | |
5 | breq12 4849 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(SPaths‘𝐺)𝑝 ↔ 𝐹(SPaths‘𝐺)𝑃)) | |
6 | 4, 5 | anbi12d 625 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝) ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
7 | eqid 2800 | . . 3 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)} | |
8 | 6, 7 | brabga 5186 | . 2 ⊢ ((𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
9 | 3, 8 | sylan9bb 506 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4844 {copab 4906 ‘cfv 6102 (class class class)co 6879 Vtxcvtx 26230 TrailsOnctrlson 26943 SPathscspths 26966 SPathsOncspthson 26968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ifp 1087 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-er 7983 df-map 8098 df-pm 8099 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 df-wlks 26848 df-trls 26944 df-pths 26969 df-spths 26970 df-spthson 26972 |
This theorem is referenced by: spthonprop 26998 isspthonpth 27002 2pthond 27230 3spthond 27520 |
Copyright terms: Public domain | W3C validator |