![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isspthson | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
pthsonfval.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
isspthson | β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsonfval.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | spthson 29266 | . . 3 β’ ((π΄ β π β§ π΅ β π) β (π΄(SPathsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)}) |
3 | 2 | breqd 5159 | . 2 β’ ((π΄ β π β§ π΅ β π) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β πΉ{β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)}π)) |
4 | breq12 5153 | . . . 4 β’ ((π = πΉ β§ π = π) β (π(π΄(TrailsOnβπΊ)π΅)π β πΉ(π΄(TrailsOnβπΊ)π΅)π)) | |
5 | breq12 5153 | . . . 4 β’ ((π = πΉ β§ π = π) β (π(SPathsβπΊ)π β πΉ(SPathsβπΊ)π)) | |
6 | 4, 5 | anbi12d 630 | . . 3 β’ ((π = πΉ β§ π = π) β ((π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π))) |
7 | eqid 2731 | . . 3 β’ {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)} = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)} | |
8 | 6, 7 | brabga 5534 | . 2 β’ ((πΉ β π β§ π β π) β (πΉ{β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)}π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π))) |
9 | 3, 8 | sylan9bb 509 | 1 β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 class class class wbr 5148 {copab 5210 βcfv 6543 (class class class)co 7412 Vtxcvtx 28524 TrailsOnctrlson 29216 SPathscspths 29238 SPathsOncspthson 29240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-spthson 29244 |
This theorem is referenced by: spthonprop 29270 isspthonpth 29274 2pthond 29464 3spthond 29698 |
Copyright terms: Public domain | W3C validator |