| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isspthson | Structured version Visualization version GIF version | ||
| Description: Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| Ref | Expression |
|---|---|
| pthsonfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isspthson | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthsonfval.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | spthson 29714 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}) |
| 3 | 2 | breqd 5097 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}𝑃)) |
| 4 | breq12 5091 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ↔ 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)) | |
| 5 | breq12 5091 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(SPaths‘𝐺)𝑝 ↔ 𝐹(SPaths‘𝐺)𝑃)) | |
| 6 | 4, 5 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝) ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
| 7 | eqid 2731 | . . 3 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)} | |
| 8 | 6, 7 | brabga 5469 | . 2 ⊢ ((𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
| 9 | 3, 8 | sylan9bb 509 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 {copab 5148 ‘cfv 6476 (class class class)co 7341 Vtxcvtx 28969 TrailsOnctrlson 29663 SPathscspths 29684 SPathsOncspthson 29686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-spthson 29690 |
| This theorem is referenced by: spthonprop 29718 isspthonpth 29722 2pthond 29915 3spthond 30149 |
| Copyright terms: Public domain | W3C validator |