|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isspthson | Structured version Visualization version GIF version | ||
| Description: Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| pthsonfval.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| Ref | Expression | 
|---|---|
| isspthson | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pthsonfval.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | spthson 29761 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}) | 
| 3 | 2 | breqd 5154 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}𝑃)) | 
| 4 | breq12 5148 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ↔ 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)) | |
| 5 | breq12 5148 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(SPaths‘𝐺)𝑝 ↔ 𝐹(SPaths‘𝐺)𝑃)) | |
| 6 | 4, 5 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝) ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | 
| 7 | eqid 2737 | . . 3 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)} | |
| 8 | 6, 7 | brabga 5539 | . 2 ⊢ ((𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | 
| 9 | 3, 8 | sylan9bb 509 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 {copab 5205 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 TrailsOnctrlson 29709 SPathscspths 29731 SPathsOncspthson 29733 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-spthson 29737 | 
| This theorem is referenced by: spthonprop 29765 isspthonpth 29769 2pthond 29962 3spthond 30196 | 
| Copyright terms: Public domain | W3C validator |