MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc00 Structured version   Visualization version   GIF version

Theorem tc00 9213
Description: The transitive closure is empty iff its argument is. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
tc00 (𝐴𝑉 → ((TC‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem tc00
StepHypRef Expression
1 tcid 9204 . . 3 (𝐴𝑉𝐴 ⊆ (TC‘𝐴))
2 sseq0 4294 . . . 4 ((𝐴 ⊆ (TC‘𝐴) ∧ (TC‘𝐴) = ∅) → 𝐴 = ∅)
32ex 417 . . 3 (𝐴 ⊆ (TC‘𝐴) → ((TC‘𝐴) = ∅ → 𝐴 = ∅))
41, 3syl 17 . 2 (𝐴𝑉 → ((TC‘𝐴) = ∅ → 𝐴 = ∅))
5 fveq2 6656 . . 3 (𝐴 = ∅ → (TC‘𝐴) = (TC‘∅))
6 tc0 9212 . . 3 (TC‘∅) = ∅
75, 6eqtrdi 2810 . 2 (𝐴 = ∅ → (TC‘𝐴) = ∅)
84, 7impbid1 228 1 (𝐴𝑉 → ((TC‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1539  wcel 2112  wss 3859  c0 4226  cfv 6333  TCctc 9201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7457  ax-inf2 9127
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-om 7578  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-tc 9202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator