Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldbnd Structured version   Visualization version   GIF version

Theorem cldbnd 36321
Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
cldbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))

Proof of Theorem cldbnd
StepHypRef Expression
1 opnbnd.1 . . . . 5 𝑋 = 𝐽
21iscld3 22958 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴))
3 eqimss 4008 . . . 4 (((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)
42, 3biimtrdi 253 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴))
5 ssinss1 4212 . . 3 (((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴)
64, 5syl6 35 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
7 sslin 4209 . . . . . 6 ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
87adantl 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
9 disjdifr 4439 . . . . 5 ((𝑋𝐴) ∩ 𝐴) = ∅
10 sseq0 4369 . . . . 5 ((((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴) ∧ ((𝑋𝐴) ∩ 𝐴) = ∅) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
1211ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
13 incom 4175 . . . . . . . 8 (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴))
14 dfss4 4235 . . . . . . . . . . 11 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
15 fveq2 6861 . . . . . . . . . . . 12 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
1615eqcomd 2736 . . . . . . . . . . 11 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1714, 16sylbi 217 . . . . . . . . . 10 (𝐴𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1817adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1918ineq2d 4186 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2013, 19eqtrid 2777 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2120ineq2d 4186 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))))
2221eqeq1d 2732 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
23 difss 4102 . . . . . . 7 (𝑋𝐴) ⊆ 𝑋
241opnbnd 36320 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2523, 24mpan2 691 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2625adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2722, 26bitr4d 282 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝑋𝐴) ∈ 𝐽))
281opncld 22927 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽))
2928ex 412 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
3029adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
31 eleq1 2817 . . . . . . 7 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3214, 31sylbi 217 . . . . . 6 (𝐴𝑋 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3332adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3430, 33sylibd 239 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽𝐴 ∈ (Clsd‘𝐽)))
3527, 34sylbid 240 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽)))
3612, 35syld 47 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)))
376, 36impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator