Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldbnd Structured version   Visualization version   GIF version

Theorem cldbnd 34515
Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
cldbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))

Proof of Theorem cldbnd
StepHypRef Expression
1 opnbnd.1 . . . . 5 𝑋 = 𝐽
21iscld3 22215 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴))
3 eqimss 3977 . . . 4 (((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)
42, 3syl6bi 252 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴))
5 ssinss1 4171 . . 3 (((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴)
64, 5syl6 35 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
7 sslin 4168 . . . . . 6 ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
87adantl 482 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
9 disjdifr 4406 . . . . 5 ((𝑋𝐴) ∩ 𝐴) = ∅
10 sseq0 4333 . . . . 5 ((((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴) ∧ ((𝑋𝐴) ∩ 𝐴) = ∅) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
1211ex 413 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
13 incom 4135 . . . . . . . 8 (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴))
14 dfss4 4192 . . . . . . . . . . 11 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
15 fveq2 6774 . . . . . . . . . . . 12 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
1615eqcomd 2744 . . . . . . . . . . 11 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1714, 16sylbi 216 . . . . . . . . . 10 (𝐴𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1817adantl 482 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1918ineq2d 4146 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2013, 19eqtrid 2790 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2120ineq2d 4146 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))))
2221eqeq1d 2740 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
23 difss 4066 . . . . . . 7 (𝑋𝐴) ⊆ 𝑋
241opnbnd 34514 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2523, 24mpan2 688 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2625adantr 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2722, 26bitr4d 281 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝑋𝐴) ∈ 𝐽))
281opncld 22184 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽))
2928ex 413 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
3029adantr 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
31 eleq1 2826 . . . . . . 7 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3214, 31sylbi 216 . . . . . 6 (𝐴𝑋 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3332adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3430, 33sylibd 238 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽𝐴 ∈ (Clsd‘𝐽)))
3527, 34sylbid 239 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽)))
3612, 35syld 47 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)))
376, 36impbid 211 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cdif 3884  cin 3886  wss 3887  c0 4256   cuni 4839  cfv 6433  Topctop 22042  Clsdccld 22167  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator