Proof of Theorem cldbnd
Step | Hyp | Ref
| Expression |
1 | | opnbnd.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | iscld3 21276 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴)) |
3 | | eqimss 3876 |
. . . 4
⊢
(((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴) |
4 | 2, 3 | syl6bi 245 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)) |
5 | | ssinss1 4062 |
. . 3
⊢
(((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) |
6 | 4, 5 | syl6 35 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) |
7 | | sslin 4059 |
. . . . . 6
⊢
((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴)) |
8 | 7 | adantl 475 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴)) |
9 | | incom 4028 |
. . . . . 6
⊢ ((𝑋 ∖ 𝐴) ∩ 𝐴) = (𝐴 ∩ (𝑋 ∖ 𝐴)) |
10 | | disjdif 4264 |
. . . . . 6
⊢ (𝐴 ∩ (𝑋 ∖ 𝐴)) = ∅ |
11 | 9, 10 | eqtri 2802 |
. . . . 5
⊢ ((𝑋 ∖ 𝐴) ∩ 𝐴) = ∅ |
12 | | sseq0 4201 |
. . . . 5
⊢ ((((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴) ∧ ((𝑋 ∖ 𝐴) ∩ 𝐴) = ∅) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅) |
13 | 8, 11, 12 | sylancl 580 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅) |
14 | 13 | ex 403 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅)) |
15 | | incom 4028 |
. . . . . . . 8
⊢
(((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘𝐴)) |
16 | | dfss4 4085 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) |
17 | | fveq2 6446 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))) = ((cls‘𝐽)‘𝐴)) |
18 | 17 | eqcomd 2784 |
. . . . . . . . . . 11
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
19 | 16, 18 | sylbi 209 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
20 | 19 | adantl 475 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
21 | 20 | ineq2d 4037 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
22 | 15, 21 | syl5eq 2826 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
23 | 22 | ineq2d 4037 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))))) |
24 | 23 | eqeq1d 2780 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
25 | | difss 3960 |
. . . . . . 7
⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 |
26 | 1 | opnbnd 32908 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
27 | 25, 26 | mpan2 681 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
28 | 27 | adantr 474 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
29 | 24, 28 | bitr4d 274 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ (𝑋 ∖ 𝐴) ∈ 𝐽)) |
30 | 1 | opncld 21245 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽)) |
31 | 30 | ex 403 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽))) |
32 | 31 | adantr 474 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽))) |
33 | | eleq1 2847 |
. . . . . . 7
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
34 | 16, 33 | sylbi 209 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
35 | 34 | adantl 475 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
36 | 32, 35 | sylibd 231 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 → 𝐴 ∈ (Clsd‘𝐽))) |
37 | 29, 36 | sylbid 232 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽))) |
38 | 14, 37 | syld 47 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → 𝐴 ∈ (Clsd‘𝐽))) |
39 | 6, 38 | impbid 204 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) |