Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldbnd Structured version   Visualization version   GIF version

Theorem cldbnd 36327
Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
cldbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))

Proof of Theorem cldbnd
StepHypRef Expression
1 opnbnd.1 . . . . 5 𝑋 = 𝐽
21iscld3 23072 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴))
3 eqimss 4042 . . . 4 (((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)
42, 3biimtrdi 253 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴))
5 ssinss1 4246 . . 3 (((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴)
64, 5syl6 35 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
7 sslin 4243 . . . . . 6 ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
87adantl 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
9 disjdifr 4473 . . . . 5 ((𝑋𝐴) ∩ 𝐴) = ∅
10 sseq0 4403 . . . . 5 ((((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴) ∧ ((𝑋𝐴) ∩ 𝐴) = ∅) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
1211ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
13 incom 4209 . . . . . . . 8 (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴))
14 dfss4 4269 . . . . . . . . . . 11 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
15 fveq2 6906 . . . . . . . . . . . 12 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
1615eqcomd 2743 . . . . . . . . . . 11 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1714, 16sylbi 217 . . . . . . . . . 10 (𝐴𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1817adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1918ineq2d 4220 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2013, 19eqtrid 2789 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2120ineq2d 4220 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))))
2221eqeq1d 2739 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
23 difss 4136 . . . . . . 7 (𝑋𝐴) ⊆ 𝑋
241opnbnd 36326 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2523, 24mpan2 691 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2625adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2722, 26bitr4d 282 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝑋𝐴) ∈ 𝐽))
281opncld 23041 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽))
2928ex 412 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
3029adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
31 eleq1 2829 . . . . . . 7 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3214, 31sylbi 217 . . . . . 6 (𝐴𝑋 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3332adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3430, 33sylibd 239 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽𝐴 ∈ (Clsd‘𝐽)))
3527, 34sylbid 240 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽)))
3612, 35syld 47 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)))
376, 36impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3948  cin 3950  wss 3951  c0 4333   cuni 4907  cfv 6561  Topctop 22899  Clsdccld 23024  clsccl 23026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-top 22900  df-cld 23027  df-ntr 23028  df-cls 23029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator