Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldbnd Structured version   Visualization version   GIF version

Theorem cldbnd 36381
Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
Hypothesis
Ref Expression
opnbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
cldbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))

Proof of Theorem cldbnd
StepHypRef Expression
1 opnbnd.1 . . . . 5 𝑋 = 𝐽
21iscld3 22989 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴))
3 eqimss 3990 . . . 4 (((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)
42, 3biimtrdi 253 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴))
5 ssinss1 4197 . . 3 (((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴)
64, 5syl6 35 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
7 sslin 4194 . . . . . 6 ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
87adantl 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴))
9 disjdifr 4424 . . . . 5 ((𝑋𝐴) ∩ 𝐴) = ∅
10 sseq0 4354 . . . . 5 ((((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) ⊆ ((𝑋𝐴) ∩ 𝐴) ∧ ((𝑋𝐴) ∩ 𝐴) = ∅) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅)
1211ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴 → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅))
13 incom 4160 . . . . . . . 8 (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴))
14 dfss4 4220 . . . . . . . . . . 11 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
15 fveq2 6831 . . . . . . . . . . . 12 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
1615eqcomd 2739 . . . . . . . . . . 11 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1714, 16sylbi 217 . . . . . . . . . 10 (𝐴𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1817adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))
1918ineq2d 4171 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2013, 19eqtrid 2780 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
2120ineq2d 4171 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))))
2221eqeq1d 2735 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
23 difss 4087 . . . . . . 7 (𝑋𝐴) ⊆ 𝑋
241opnbnd 36380 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2523, 24mpan2 691 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2625adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 ↔ ((𝑋𝐴) ∩ (((cls‘𝐽)‘(𝑋𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))))) = ∅))
2722, 26bitr4d 282 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ ↔ (𝑋𝐴) ∈ 𝐽))
281opncld 22958 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽))
2928ex 412 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
3029adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽)))
31 eleq1 2821 . . . . . . 7 ((𝑋 ∖ (𝑋𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3214, 31sylbi 217 . . . . . 6 (𝐴𝑋 → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3332adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋 ∖ (𝑋𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽)))
3430, 33sylibd 239 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝑋𝐴) ∈ 𝐽𝐴 ∈ (Clsd‘𝐽)))
3527, 34sylbid 240 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((𝑋𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽)))
3612, 35syld 47 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)))
376, 36impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3896  cin 3898  wss 3899  c0 4284   cuni 4860  cfv 6489  Topctop 22818  Clsdccld 22941  clsccl 22943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-top 22819  df-cld 22944  df-ntr 22945  df-cls 22946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator