Proof of Theorem cldbnd
Step | Hyp | Ref
| Expression |
1 | | opnbnd.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | iscld3 22215 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝐴) = 𝐴)) |
3 | | eqimss 3977 |
. . . 4
⊢
(((cls‘𝐽)‘𝐴) = 𝐴 → ((cls‘𝐽)‘𝐴) ⊆ 𝐴) |
4 | 2, 3 | syl6bi 252 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐴)) |
5 | | ssinss1 4171 |
. . 3
⊢
(((cls‘𝐽)‘𝐴) ⊆ 𝐴 → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) |
6 | 4, 5 | syl6 35 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) |
7 | | sslin 4168 |
. . . . . 6
⊢
((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴)) |
8 | 7 | adantl 482 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴)) |
9 | | disjdifr 4406 |
. . . . 5
⊢ ((𝑋 ∖ 𝐴) ∩ 𝐴) = ∅ |
10 | | sseq0 4333 |
. . . . 5
⊢ ((((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) ⊆ ((𝑋 ∖ 𝐴) ∩ 𝐴) ∧ ((𝑋 ∖ 𝐴) ∩ 𝐴) = ∅) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅) |
11 | 8, 9, 10 | sylancl 586 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅) |
12 | 11 | ex 413 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅)) |
13 | | incom 4135 |
. . . . . . . 8
⊢
(((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘𝐴)) |
14 | | dfss4 4192 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) |
15 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))) = ((cls‘𝐽)‘𝐴)) |
16 | 15 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
17 | 14, 16 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝑋 → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
18 | 17 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) = ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) |
19 | 18 | ineq2d 4146 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘𝐴)) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
20 | 13, 19 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
21 | 20 | ineq2d 4146 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))))) |
22 | 21 | eqeq1d 2740 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
23 | | difss 4066 |
. . . . . . 7
⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 |
24 | 1 | opnbnd 34514 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
25 | 23, 24 | mpan2 688 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
26 | 25 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) = ∅)) |
27 | 22, 26 | bitr4d 281 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ ↔ (𝑋 ∖ 𝐴) ∈ 𝐽)) |
28 | 1 | opncld 22184 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽)) |
29 | 28 | ex 413 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽))) |
30 | 29 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 → (𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽))) |
31 | | eleq1 2826 |
. . . . . . 7
⊢ ((𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
32 | 14, 31 | sylbi 216 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
33 | 32 | adantl 482 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ (𝑋 ∖ 𝐴)) ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘𝐽))) |
34 | 30, 33 | sylibd 238 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝑋 ∖ 𝐴) ∈ 𝐽 → 𝐴 ∈ (Clsd‘𝐽))) |
35 | 27, 34 | sylbid 239 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((𝑋 ∖ 𝐴) ∩ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) = ∅ → 𝐴 ∈ (Clsd‘𝐽))) |
36 | 12, 35 | syld 47 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴 → 𝐴 ∈ (Clsd‘𝐽))) |
37 | 6, 36 | impbid 211 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) ⊆ 𝐴)) |