MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun3 Structured version   Visualization version   GIF version

Theorem hashun3 14099
Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.)
Assertion
Ref Expression
hashun3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))

Proof of Theorem hashun3
StepHypRef Expression
1 diffi 8962 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
21adantl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ∈ Fin)
3 simpl 483 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 inss1 4162 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
5 ssfi 8956 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
63, 4, 5sylancl 586 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
7 sslin 4168 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴))
84, 7ax-mp 5 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴)
9 disjdifr 4406 . . . . . . . 8 ((𝐵𝐴) ∩ 𝐴) = ∅
10 sseq0 4333 . . . . . . . 8 ((((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴) ∧ ((𝐵𝐴) ∩ 𝐴) = ∅) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
118, 9, 10mp2an 689 . . . . . . 7 ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅
1211a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
13 hashun 14097 . . . . . 6 (((𝐵𝐴) ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
142, 6, 12, 13syl3anc 1370 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
15 incom 4135 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
1615uneq2i 4094 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐴𝐵)) = ((𝐵𝐴) ∪ (𝐵𝐴))
17 uncom 4087 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
18 inundif 4412 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
1916, 17, 183eqtri 2770 . . . . . . 7 ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵
2019a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵)
2120fveq2d 6778 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = (♯‘𝐵))
2214, 21eqtr3d 2780 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵))
23 hashcl 14071 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2423adantl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
2524nn0cnd 12295 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℂ)
26 hashcl 14071 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
276, 26syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℕ0)
2827nn0cnd 12295 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℂ)
29 hashcl 14071 . . . . . . 7 ((𝐵𝐴) ∈ Fin → (♯‘(𝐵𝐴)) ∈ ℕ0)
302, 29syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℕ0)
3130nn0cnd 12295 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℂ)
3225, 28, 31subadd2d 11351 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)) ↔ ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵)))
3322, 32mpbird 256 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)))
3433oveq2d 7291 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
35 hashcl 14071 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3635adantr 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3736nn0cnd 12295 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℂ)
3837, 25, 28addsubassd 11352 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))))
39 undif2 4410 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
4039fveq2i 6777 . . 3 (♯‘(𝐴 ∪ (𝐵𝐴))) = (♯‘(𝐴𝐵))
41 disjdif 4405 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
4241a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∩ (𝐵𝐴)) = ∅)
43 hashun 14097 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
443, 2, 42, 43syl3anc 1370 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4540, 44eqtr3id 2792 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4634, 38, 453eqtr4rd 2789 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  Fincfn 8733   + caddc 10874  cmin 11205  0cn0 12233  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-hash 14045
This theorem is referenced by:  incexclem  15548
  Copyright terms: Public domain W3C validator