MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun3 Structured version   Visualization version   GIF version

Theorem hashun3 14356
Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.)
Assertion
Ref Expression
hashun3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))

Proof of Theorem hashun3
StepHypRef Expression
1 diffi 9145 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
21adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ∈ Fin)
3 simpl 482 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 inss1 4203 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
5 ssfi 9143 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
63, 4, 5sylancl 586 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
7 sslin 4209 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴))
84, 7ax-mp 5 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴)
9 disjdifr 4439 . . . . . . . 8 ((𝐵𝐴) ∩ 𝐴) = ∅
10 sseq0 4369 . . . . . . . 8 ((((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴) ∧ ((𝐵𝐴) ∩ 𝐴) = ∅) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
118, 9, 10mp2an 692 . . . . . . 7 ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅
1211a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
13 hashun 14354 . . . . . 6 (((𝐵𝐴) ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
142, 6, 12, 13syl3anc 1373 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
15 incom 4175 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
1615uneq2i 4131 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐴𝐵)) = ((𝐵𝐴) ∪ (𝐵𝐴))
17 uncom 4124 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
18 inundif 4445 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
1916, 17, 183eqtri 2757 . . . . . . 7 ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵
2019a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵)
2120fveq2d 6865 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = (♯‘𝐵))
2214, 21eqtr3d 2767 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵))
23 hashcl 14328 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2423adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
2524nn0cnd 12512 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℂ)
26 hashcl 14328 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
276, 26syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℕ0)
2827nn0cnd 12512 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℂ)
29 hashcl 14328 . . . . . . 7 ((𝐵𝐴) ∈ Fin → (♯‘(𝐵𝐴)) ∈ ℕ0)
302, 29syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℕ0)
3130nn0cnd 12512 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℂ)
3225, 28, 31subadd2d 11559 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)) ↔ ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵)))
3322, 32mpbird 257 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)))
3433oveq2d 7406 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
35 hashcl 14328 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3635adantr 480 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3736nn0cnd 12512 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℂ)
3837, 25, 28addsubassd 11560 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))))
39 undif2 4443 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
4039fveq2i 6864 . . 3 (♯‘(𝐴 ∪ (𝐵𝐴))) = (♯‘(𝐴𝐵))
41 disjdif 4438 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
4241a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∩ (𝐵𝐴)) = ∅)
43 hashun 14354 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
443, 2, 42, 43syl3anc 1373 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4540, 44eqtr3id 2779 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4634, 38, 453eqtr4rd 2776 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  cfv 6514  (class class class)co 7390  Fincfn 8921   + caddc 11078  cmin 11412  0cn0 12449  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-hash 14303
This theorem is referenced by:  incexclem  15809
  Copyright terms: Public domain W3C validator