MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun3 Structured version   Visualization version   GIF version

Theorem hashun3 14433
Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.)
Assertion
Ref Expression
hashun3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))

Proof of Theorem hashun3
StepHypRef Expression
1 diffi 9242 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
21adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ∈ Fin)
3 simpl 482 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 inss1 4258 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
5 ssfi 9240 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
63, 4, 5sylancl 585 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
7 sslin 4264 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴))
84, 7ax-mp 5 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴)
9 disjdifr 4496 . . . . . . . 8 ((𝐵𝐴) ∩ 𝐴) = ∅
10 sseq0 4426 . . . . . . . 8 ((((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴) ∧ ((𝐵𝐴) ∩ 𝐴) = ∅) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
118, 9, 10mp2an 691 . . . . . . 7 ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅
1211a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
13 hashun 14431 . . . . . 6 (((𝐵𝐴) ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
142, 6, 12, 13syl3anc 1371 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
15 incom 4230 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
1615uneq2i 4188 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐴𝐵)) = ((𝐵𝐴) ∪ (𝐵𝐴))
17 uncom 4181 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
18 inundif 4502 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
1916, 17, 183eqtri 2772 . . . . . . 7 ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵
2019a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵)
2120fveq2d 6924 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = (♯‘𝐵))
2214, 21eqtr3d 2782 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵))
23 hashcl 14405 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2423adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
2524nn0cnd 12615 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℂ)
26 hashcl 14405 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
276, 26syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℕ0)
2827nn0cnd 12615 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℂ)
29 hashcl 14405 . . . . . . 7 ((𝐵𝐴) ∈ Fin → (♯‘(𝐵𝐴)) ∈ ℕ0)
302, 29syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℕ0)
3130nn0cnd 12615 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℂ)
3225, 28, 31subadd2d 11666 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)) ↔ ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵)))
3322, 32mpbird 257 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)))
3433oveq2d 7464 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
35 hashcl 14405 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3635adantr 480 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3736nn0cnd 12615 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℂ)
3837, 25, 28addsubassd 11667 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))))
39 undif2 4500 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
4039fveq2i 6923 . . 3 (♯‘(𝐴 ∪ (𝐵𝐴))) = (♯‘(𝐴𝐵))
41 disjdif 4495 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
4241a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∩ (𝐵𝐴)) = ∅)
43 hashun 14431 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
443, 2, 42, 43syl3anc 1371 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4540, 44eqtr3id 2794 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4634, 38, 453eqtr4rd 2791 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Fincfn 9003   + caddc 11187  cmin 11520  0cn0 12553  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-hash 14380
This theorem is referenced by:  incexclem  15884
  Copyright terms: Public domain W3C validator