MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun3 Structured version   Visualization version   GIF version

Theorem hashun3 13951
Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.)
Assertion
Ref Expression
hashun3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))

Proof of Theorem hashun3
StepHypRef Expression
1 diffi 8906 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
21adantl 485 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ∈ Fin)
3 simpl 486 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 inss1 4143 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
5 ssfi 8851 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
63, 4, 5sylancl 589 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
7 sslin 4149 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴))
84, 7ax-mp 5 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴)
9 disjdifr 4387 . . . . . . . 8 ((𝐵𝐴) ∩ 𝐴) = ∅
10 sseq0 4314 . . . . . . . 8 ((((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴) ∧ ((𝐵𝐴) ∩ 𝐴) = ∅) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
118, 9, 10mp2an 692 . . . . . . 7 ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅
1211a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
13 hashun 13949 . . . . . 6 (((𝐵𝐴) ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
142, 6, 12, 13syl3anc 1373 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
15 incom 4115 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
1615uneq2i 4074 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐴𝐵)) = ((𝐵𝐴) ∪ (𝐵𝐴))
17 uncom 4067 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
18 inundif 4393 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
1916, 17, 183eqtri 2769 . . . . . . 7 ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵
2019a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵)
2120fveq2d 6721 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = (♯‘𝐵))
2214, 21eqtr3d 2779 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵))
23 hashcl 13923 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2423adantl 485 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
2524nn0cnd 12152 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℂ)
26 hashcl 13923 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
276, 26syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℕ0)
2827nn0cnd 12152 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℂ)
29 hashcl 13923 . . . . . . 7 ((𝐵𝐴) ∈ Fin → (♯‘(𝐵𝐴)) ∈ ℕ0)
302, 29syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℕ0)
3130nn0cnd 12152 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℂ)
3225, 28, 31subadd2d 11208 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)) ↔ ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵)))
3322, 32mpbird 260 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)))
3433oveq2d 7229 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
35 hashcl 13923 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3635adantr 484 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3736nn0cnd 12152 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℂ)
3837, 25, 28addsubassd 11209 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))))
39 undif2 4391 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
4039fveq2i 6720 . . 3 (♯‘(𝐴 ∪ (𝐵𝐴))) = (♯‘(𝐴𝐵))
41 disjdif 4386 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
4241a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∩ (𝐵𝐴)) = ∅)
43 hashun 13949 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
443, 2, 42, 43syl3anc 1373 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4540, 44eqtr3id 2792 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4634, 38, 453eqtr4rd 2788 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237  cfv 6380  (class class class)co 7213  Fincfn 8626   + caddc 10732  cmin 11062  0cn0 12090  chash 13896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-hash 13897
This theorem is referenced by:  incexclem  15400
  Copyright terms: Public domain W3C validator