Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem13 Structured version   Visualization version   GIF version

Theorem cvmliftlem13 33258
Description: Lemma for cvmlift 33261. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
Assertion
Ref Expression
cvmliftlem13 (𝜑 → (𝐾‘0) = 𝑃)
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem13
StepHypRef Expression
1 cvmliftlem.1 . . . . . . 7 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . 7 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . 7 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . 7 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . 7 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . 7 𝐿 = (topGen‘ran (,))
12 cvmliftlem.q . . . . . . 7 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
13 cvmliftlem.k . . . . . . 7 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 33257 . . . . . 6 (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
1514simpld 495 . . . . 5 (𝜑𝐾 ∈ (II Cn 𝐶))
16 iiuni 24044 . . . . . 6 (0[,]1) = II
1716, 2cnf 22397 . . . . 5 (𝐾 ∈ (II Cn 𝐶) → 𝐾:(0[,]1)⟶𝐵)
1815, 17syl 17 . . . 4 (𝜑𝐾:(0[,]1)⟶𝐵)
1918ffund 6604 . . 3 (𝜑 → Fun 𝐾)
20 nnuz 12621 . . . . . . 7 ℕ = (ℤ‘1)
218, 20eleqtrdi 2849 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
22 eluzfz1 13263 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2321, 22syl 17 . . . . 5 (𝜑 → 1 ∈ (1...𝑁))
24 fveq2 6774 . . . . . 6 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
2524ssiun2s 4978 . . . . 5 (1 ∈ (1...𝑁) → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2623, 25syl 17 . . . 4 (𝜑 → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2726, 13sseqtrrdi 3972 . . 3 (𝜑 → (𝑄‘1) ⊆ 𝐾)
28 0xr 11022 . . . . . . 7 0 ∈ ℝ*
2928a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
308nnrecred 12024 . . . . . . 7 (𝜑 → (1 / 𝑁) ∈ ℝ)
3130rexrd 11025 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ*)
32 1red 10976 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
33 0le1 11498 . . . . . . . 8 0 ≤ 1
3433a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 1)
358nnred 11988 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
368nngt0d 12022 . . . . . . 7 (𝜑 → 0 < 𝑁)
37 divge0 11844 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (1 / 𝑁))
3832, 34, 35, 36, 37syl22anc 836 . . . . . 6 (𝜑 → 0 ≤ (1 / 𝑁))
39 lbicc2 13196 . . . . . 6 ((0 ∈ ℝ* ∧ (1 / 𝑁) ∈ ℝ* ∧ 0 ≤ (1 / 𝑁)) → 0 ∈ (0[,](1 / 𝑁)))
4029, 31, 38, 39syl3anc 1370 . . . . 5 (𝜑 → 0 ∈ (0[,](1 / 𝑁)))
41 1m1e0 12045 . . . . . . . 8 (1 − 1) = 0
4241oveq1i 7285 . . . . . . 7 ((1 − 1) / 𝑁) = (0 / 𝑁)
438nncnd 11989 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
448nnne0d 12023 . . . . . . . 8 (𝜑𝑁 ≠ 0)
4543, 44div0d 11750 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
4642, 45eqtrid 2790 . . . . . 6 (𝜑 → ((1 − 1) / 𝑁) = 0)
4746oveq1d 7290 . . . . 5 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
4840, 47eleqtrrd 2842 . . . 4 (𝜑 → 0 ∈ (((1 − 1) / 𝑁)[,](1 / 𝑁)))
49 eqid 2738 . . . . . . . 8 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
50 simpr 485 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49cvmliftlem7 33253 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49, 50, 51cvmliftlem6 33252 . . . . . . 7 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5323, 52mpdan 684 . . . . . 6 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5453simpld 495 . . . . 5 (𝜑 → (𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵)
5554fdmd 6611 . . . 4 (𝜑 → dom (𝑄‘1) = (((1 − 1) / 𝑁)[,](1 / 𝑁)))
5648, 55eleqtrrd 2842 . . 3 (𝜑 → 0 ∈ dom (𝑄‘1))
57 funssfv 6795 . . 3 ((Fun 𝐾 ∧ (𝑄‘1) ⊆ 𝐾 ∧ 0 ∈ dom (𝑄‘1)) → (𝐾‘0) = ((𝑄‘1)‘0))
5819, 27, 56, 57syl3anc 1370 . 2 (𝜑 → (𝐾‘0) = ((𝑄‘1)‘0))
591, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem9 33255 . . . 4 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6023, 59mpdan 684 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6146fveq2d 6778 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘1)‘0))
6241fveq2i 6777 . . . . . 6 (𝑄‘(1 − 1)) = (𝑄‘0)
631, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem4 33250 . . . . . 6 (𝑄‘0) = {⟨0, 𝑃⟩}
6462, 63eqtri 2766 . . . . 5 (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩}
6564a1i 11 . . . 4 (𝜑 → (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩})
6665, 46fveq12d 6781 . . 3 (𝜑 → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
6760, 61, 663eqtr3d 2786 . 2 (𝜑 → ((𝑄‘1)‘0) = ({⟨0, 𝑃⟩}‘0))
68 0nn0 12248 . . 3 0 ∈ ℕ0
69 fvsng 7052 . . 3 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7068, 6, 69sylancr 587 . 2 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7158, 67, 703eqtrd 2782 1 (𝜑 → (𝐾‘0) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  cfv 6433  crio 7231  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  cr 10870  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cuz 12582  (,)cioo 13079  [,]cicc 13082  ...cfz 13239  seqcseq 13721  t crest 17131  topGenctg 17148   Cn ccn 22375  Homeochmeo 22904  IIcii 24038   CovMap ccvm 33217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-cn 22378  df-hmeo 22906  df-ii 24040  df-cvm 33218
This theorem is referenced by:  cvmliftlem14  33259
  Copyright terms: Public domain W3C validator