Proof of Theorem cvmliftlem13
| Step | Hyp | Ref
| Expression |
| 1 | | cvmliftlem.1 |
. . . . . . 7
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 2 | | cvmliftlem.b |
. . . . . . 7
⊢ 𝐵 = ∪
𝐶 |
| 3 | | cvmliftlem.x |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
| 4 | | cvmliftlem.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 5 | | cvmliftlem.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 6 | | cvmliftlem.p |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 7 | | cvmliftlem.e |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| 8 | | cvmliftlem.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | | cvmliftlem.t |
. . . . . . 7
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| 10 | | cvmliftlem.a |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| 11 | | cvmliftlem.l |
. . . . . . 7
⊢ 𝐿 = (topGen‘ran
(,)) |
| 12 | | cvmliftlem.q |
. . . . . . 7
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
| 13 | | cvmliftlem.k |
. . . . . . 7
⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | cvmliftlem11 35322 |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) |
| 15 | 14 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐶)) |
| 16 | | iiuni 24830 |
. . . . . 6
⊢ (0[,]1) =
∪ II |
| 17 | 16, 2 | cnf 23189 |
. . . . 5
⊢ (𝐾 ∈ (II Cn 𝐶) → 𝐾:(0[,]1)⟶𝐵) |
| 18 | 15, 17 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾:(0[,]1)⟶𝐵) |
| 19 | 18 | ffund 6715 |
. . 3
⊢ (𝜑 → Fun 𝐾) |
| 20 | | nnuz 12900 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 21 | 8, 20 | eleqtrdi 2845 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 22 | | eluzfz1 13553 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
| 24 | | fveq2 6881 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑄‘𝑘) = (𝑄‘1)) |
| 25 | 24 | ssiun2s 5029 |
. . . . 5
⊢ (1 ∈
(1...𝑁) → (𝑄‘1) ⊆ ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘)) |
| 26 | 23, 25 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑄‘1) ⊆ ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘)) |
| 27 | 26, 13 | sseqtrrdi 4005 |
. . 3
⊢ (𝜑 → (𝑄‘1) ⊆ 𝐾) |
| 28 | | 0xr 11287 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
| 29 | 28 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ*) |
| 30 | 8 | nnrecred 12296 |
. . . . . . 7
⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
| 31 | 30 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 → (1 / 𝑁) ∈
ℝ*) |
| 32 | | 1red 11241 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
| 33 | | 0le1 11765 |
. . . . . . . 8
⊢ 0 ≤
1 |
| 34 | 33 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 1) |
| 35 | 8 | nnred 12260 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 36 | 8 | nngt0d 12294 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝑁) |
| 37 | | divge0 12116 |
. . . . . . 7
⊢ (((1
∈ ℝ ∧ 0 ≤ 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (1 / 𝑁)) |
| 38 | 32, 34, 35, 36, 37 | syl22anc 838 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (1 / 𝑁)) |
| 39 | | lbicc2 13486 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ (1 / 𝑁) ∈ ℝ* ∧ 0 ≤ (1
/ 𝑁)) → 0 ∈
(0[,](1 / 𝑁))) |
| 40 | 29, 31, 38, 39 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → 0 ∈ (0[,](1 / 𝑁))) |
| 41 | | 1m1e0 12317 |
. . . . . . . 8
⊢ (1
− 1) = 0 |
| 42 | 41 | oveq1i 7420 |
. . . . . . 7
⊢ ((1
− 1) / 𝑁) = (0 /
𝑁) |
| 43 | 8 | nncnd 12261 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 44 | 8 | nnne0d 12295 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ≠ 0) |
| 45 | 43, 44 | div0d 12021 |
. . . . . . 7
⊢ (𝜑 → (0 / 𝑁) = 0) |
| 46 | 42, 45 | eqtrid 2783 |
. . . . . 6
⊢ (𝜑 → ((1 − 1) / 𝑁) = 0) |
| 47 | 46 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁))) |
| 48 | 40, 47 | eleqtrrd 2838 |
. . . 4
⊢ (𝜑 → 0 ∈ (((1 − 1) /
𝑁)[,](1 / 𝑁))) |
| 49 | | eqid 2736 |
. . . . . . . 8
⊢ (((1
− 1) / 𝑁)[,](1 /
𝑁)) = (((1 − 1) /
𝑁)[,](1 / 𝑁)) |
| 50 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁)) |
| 51 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 49 | cvmliftlem7 35318 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) /
𝑁)) ∈ (◡𝐹 “ {(𝐺‘((1 − 1) / 𝑁))})) |
| 52 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 49, 50, 51 | cvmliftlem6 35317 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))) |
| 53 | 23, 52 | mpdan 687 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))) |
| 54 | 53 | simpld 494 |
. . . . 5
⊢ (𝜑 → (𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵) |
| 55 | 54 | fdmd 6721 |
. . . 4
⊢ (𝜑 → dom (𝑄‘1) = (((1 − 1) / 𝑁)[,](1 / 𝑁))) |
| 56 | 48, 55 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → 0 ∈ dom (𝑄‘1)) |
| 57 | | funssfv 6902 |
. . 3
⊢ ((Fun
𝐾 ∧ (𝑄‘1) ⊆ 𝐾 ∧ 0 ∈ dom (𝑄‘1)) → (𝐾‘0) = ((𝑄‘1)‘0)) |
| 58 | 19, 27, 56, 57 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝐾‘0) = ((𝑄‘1)‘0)) |
| 59 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cvmliftlem9 35320 |
. . . 4
⊢ ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) /
𝑁))) |
| 60 | 23, 59 | mpdan 687 |
. . 3
⊢ (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) /
𝑁))) |
| 61 | 46 | fveq2d 6885 |
. . 3
⊢ (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘1)‘0)) |
| 62 | 41 | fveq2i 6884 |
. . . . . 6
⊢ (𝑄‘(1 − 1)) = (𝑄‘0) |
| 63 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cvmliftlem4 35315 |
. . . . . 6
⊢ (𝑄‘0) = {〈0, 𝑃〉} |
| 64 | 62, 63 | eqtri 2759 |
. . . . 5
⊢ (𝑄‘(1 − 1)) =
{〈0, 𝑃〉} |
| 65 | 64 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑄‘(1 − 1)) = {〈0, 𝑃〉}) |
| 66 | 65, 46 | fveq12d 6888 |
. . 3
⊢ (𝜑 → ((𝑄‘(1 − 1))‘((1 − 1) /
𝑁)) = ({〈0, 𝑃〉}‘0)) |
| 67 | 60, 61, 66 | 3eqtr3d 2779 |
. 2
⊢ (𝜑 → ((𝑄‘1)‘0) = ({〈0, 𝑃〉}‘0)) |
| 68 | | 0nn0 12521 |
. . 3
⊢ 0 ∈
ℕ0 |
| 69 | | fvsng 7177 |
. . 3
⊢ ((0
∈ ℕ0 ∧ 𝑃 ∈ 𝐵) → ({〈0, 𝑃〉}‘0) = 𝑃) |
| 70 | 68, 6, 69 | sylancr 587 |
. 2
⊢ (𝜑 → ({〈0, 𝑃〉}‘0) = 𝑃) |
| 71 | 58, 67, 70 | 3eqtrd 2775 |
1
⊢ (𝜑 → (𝐾‘0) = 𝑃) |