Step | Hyp | Ref
| Expression |
1 | | cvmliftlem.1 |
. . . . . . 7
β’ π = (π β π½ β¦ {π β (π« πΆ β {β
}) β£ (βͺ π =
(β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β
β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
2 | | cvmliftlem.b |
. . . . . . 7
β’ π΅ = βͺ
πΆ |
3 | | cvmliftlem.x |
. . . . . . 7
β’ π = βͺ
π½ |
4 | | cvmliftlem.f |
. . . . . . 7
β’ (π β πΉ β (πΆ CovMap π½)) |
5 | | cvmliftlem.g |
. . . . . . 7
β’ (π β πΊ β (II Cn π½)) |
6 | | cvmliftlem.p |
. . . . . . 7
β’ (π β π β π΅) |
7 | | cvmliftlem.e |
. . . . . . 7
β’ (π β (πΉβπ) = (πΊβ0)) |
8 | | cvmliftlem.n |
. . . . . . 7
β’ (π β π β β) |
9 | | cvmliftlem.t |
. . . . . . 7
β’ (π β π:(1...π)βΆβͺ
π β π½ ({π} Γ (πβπ))) |
10 | | cvmliftlem.a |
. . . . . . 7
β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
11 | | cvmliftlem.l |
. . . . . . 7
β’ πΏ = (topGenβran
(,)) |
12 | | cvmliftlem.q |
. . . . . . 7
β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})) |
13 | | cvmliftlem.k |
. . . . . . 7
β’ πΎ = βͺ π β (1...π)(πβπ) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | cvmliftlem11 34274 |
. . . . . 6
β’ (π β (πΎ β (II Cn πΆ) β§ (πΉ β πΎ) = πΊ)) |
15 | 14 | simpld 495 |
. . . . 5
β’ (π β πΎ β (II Cn πΆ)) |
16 | | iiuni 24388 |
. . . . . 6
β’ (0[,]1) =
βͺ II |
17 | 16, 2 | cnf 22741 |
. . . . 5
β’ (πΎ β (II Cn πΆ) β πΎ:(0[,]1)βΆπ΅) |
18 | 15, 17 | syl 17 |
. . . 4
β’ (π β πΎ:(0[,]1)βΆπ΅) |
19 | 18 | ffund 6718 |
. . 3
β’ (π β Fun πΎ) |
20 | | nnuz 12861 |
. . . . . . 7
β’ β =
(β€β₯β1) |
21 | 8, 20 | eleqtrdi 2843 |
. . . . . 6
β’ (π β π β
(β€β₯β1)) |
22 | | eluzfz1 13504 |
. . . . . 6
β’ (π β
(β€β₯β1) β 1 β (1...π)) |
23 | 21, 22 | syl 17 |
. . . . 5
β’ (π β 1 β (1...π)) |
24 | | fveq2 6888 |
. . . . . 6
β’ (π = 1 β (πβπ) = (πβ1)) |
25 | 24 | ssiun2s 5050 |
. . . . 5
β’ (1 β
(1...π) β (πβ1) β βͺ π β (1...π)(πβπ)) |
26 | 23, 25 | syl 17 |
. . . 4
β’ (π β (πβ1) β βͺ π β (1...π)(πβπ)) |
27 | 26, 13 | sseqtrrdi 4032 |
. . 3
β’ (π β (πβ1) β πΎ) |
28 | | 0xr 11257 |
. . . . . . 7
β’ 0 β
β* |
29 | 28 | a1i 11 |
. . . . . 6
β’ (π β 0 β
β*) |
30 | 8 | nnrecred 12259 |
. . . . . . 7
β’ (π β (1 / π) β β) |
31 | 30 | rexrd 11260 |
. . . . . 6
β’ (π β (1 / π) β
β*) |
32 | | 1red 11211 |
. . . . . . 7
β’ (π β 1 β
β) |
33 | | 0le1 11733 |
. . . . . . . 8
β’ 0 β€
1 |
34 | 33 | a1i 11 |
. . . . . . 7
β’ (π β 0 β€ 1) |
35 | 8 | nnred 12223 |
. . . . . . 7
β’ (π β π β β) |
36 | 8 | nngt0d 12257 |
. . . . . . 7
β’ (π β 0 < π) |
37 | | divge0 12079 |
. . . . . . 7
β’ (((1
β β β§ 0 β€ 1) β§ (π β β β§ 0 < π)) β 0 β€ (1 / π)) |
38 | 32, 34, 35, 36, 37 | syl22anc 837 |
. . . . . 6
β’ (π β 0 β€ (1 / π)) |
39 | | lbicc2 13437 |
. . . . . 6
β’ ((0
β β* β§ (1 / π) β β* β§ 0 β€ (1
/ π)) β 0 β
(0[,](1 / π))) |
40 | 29, 31, 38, 39 | syl3anc 1371 |
. . . . 5
β’ (π β 0 β (0[,](1 / π))) |
41 | | 1m1e0 12280 |
. . . . . . . 8
β’ (1
β 1) = 0 |
42 | 41 | oveq1i 7415 |
. . . . . . 7
β’ ((1
β 1) / π) = (0 /
π) |
43 | 8 | nncnd 12224 |
. . . . . . . 8
β’ (π β π β β) |
44 | 8 | nnne0d 12258 |
. . . . . . . 8
β’ (π β π β 0) |
45 | 43, 44 | div0d 11985 |
. . . . . . 7
β’ (π β (0 / π) = 0) |
46 | 42, 45 | eqtrid 2784 |
. . . . . 6
β’ (π β ((1 β 1) / π) = 0) |
47 | 46 | oveq1d 7420 |
. . . . 5
β’ (π β (((1 β 1) / π)[,](1 / π)) = (0[,](1 / π))) |
48 | 40, 47 | eleqtrrd 2836 |
. . . 4
β’ (π β 0 β (((1 β 1) /
π)[,](1 / π))) |
49 | | eqid 2732 |
. . . . . . . 8
β’ (((1
β 1) / π)[,](1 /
π)) = (((1 β 1) /
π)[,](1 / π)) |
50 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ 1 β (1...π)) β 1 β (1...π)) |
51 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 49 | cvmliftlem7 34270 |
. . . . . . . 8
β’ ((π β§ 1 β (1...π)) β ((πβ(1 β 1))β((1 β 1) /
π)) β (β‘πΉ β {(πΊβ((1 β 1) / π))})) |
52 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 49, 50, 51 | cvmliftlem6 34269 |
. . . . . . 7
β’ ((π β§ 1 β (1...π)) β ((πβ1):(((1 β 1) / π)[,](1 / π))βΆπ΅ β§ (πΉ β (πβ1)) = (πΊ βΎ (((1 β 1) / π)[,](1 / π))))) |
53 | 23, 52 | mpdan 685 |
. . . . . 6
β’ (π β ((πβ1):(((1 β 1) / π)[,](1 / π))βΆπ΅ β§ (πΉ β (πβ1)) = (πΊ βΎ (((1 β 1) / π)[,](1 / π))))) |
54 | 53 | simpld 495 |
. . . . 5
β’ (π β (πβ1):(((1 β 1) / π)[,](1 / π))βΆπ΅) |
55 | 54 | fdmd 6725 |
. . . 4
β’ (π β dom (πβ1) = (((1 β 1) / π)[,](1 / π))) |
56 | 48, 55 | eleqtrrd 2836 |
. . 3
β’ (π β 0 β dom (πβ1)) |
57 | | funssfv 6909 |
. . 3
β’ ((Fun
πΎ β§ (πβ1) β πΎ β§ 0 β dom (πβ1)) β (πΎβ0) = ((πβ1)β0)) |
58 | 19, 27, 56, 57 | syl3anc 1371 |
. 2
β’ (π β (πΎβ0) = ((πβ1)β0)) |
59 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cvmliftlem9 34272 |
. . . 4
β’ ((π β§ 1 β (1...π)) β ((πβ1)β((1 β 1) / π)) = ((πβ(1 β 1))β((1 β 1) /
π))) |
60 | 23, 59 | mpdan 685 |
. . 3
β’ (π β ((πβ1)β((1 β 1) / π)) = ((πβ(1 β 1))β((1 β 1) /
π))) |
61 | 46 | fveq2d 6892 |
. . 3
β’ (π β ((πβ1)β((1 β 1) / π)) = ((πβ1)β0)) |
62 | 41 | fveq2i 6891 |
. . . . . 6
β’ (πβ(1 β 1)) = (πβ0) |
63 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cvmliftlem4 34267 |
. . . . . 6
β’ (πβ0) = {β¨0, πβ©} |
64 | 62, 63 | eqtri 2760 |
. . . . 5
β’ (πβ(1 β 1)) =
{β¨0, πβ©} |
65 | 64 | a1i 11 |
. . . 4
β’ (π β (πβ(1 β 1)) = {β¨0, πβ©}) |
66 | 65, 46 | fveq12d 6895 |
. . 3
β’ (π β ((πβ(1 β 1))β((1 β 1) /
π)) = ({β¨0, πβ©}β0)) |
67 | 60, 61, 66 | 3eqtr3d 2780 |
. 2
β’ (π β ((πβ1)β0) = ({β¨0, πβ©}β0)) |
68 | | 0nn0 12483 |
. . 3
β’ 0 β
β0 |
69 | | fvsng 7174 |
. . 3
β’ ((0
β β0 β§ π β π΅) β ({β¨0, πβ©}β0) = π) |
70 | 68, 6, 69 | sylancr 587 |
. 2
β’ (π β ({β¨0, πβ©}β0) = π) |
71 | 58, 67, 70 | 3eqtrd 2776 |
1
β’ (π β (πΎβ0) = π) |