Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem13 Structured version   Visualization version   GIF version

Theorem cvmliftlem13 33252
Description: Lemma for cvmlift 33255. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
Assertion
Ref Expression
cvmliftlem13 (𝜑 → (𝐾‘0) = 𝑃)
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem13
StepHypRef Expression
1 cvmliftlem.1 . . . . . . 7 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . 7 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . 7 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . 7 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . 7 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . 7 𝐿 = (topGen‘ran (,))
12 cvmliftlem.q . . . . . . 7 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
13 cvmliftlem.k . . . . . . 7 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 33251 . . . . . 6 (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
1514simpld 495 . . . . 5 (𝜑𝐾 ∈ (II Cn 𝐶))
16 iiuni 24040 . . . . . 6 (0[,]1) = II
1716, 2cnf 22393 . . . . 5 (𝐾 ∈ (II Cn 𝐶) → 𝐾:(0[,]1)⟶𝐵)
1815, 17syl 17 . . . 4 (𝜑𝐾:(0[,]1)⟶𝐵)
1918ffund 6601 . . 3 (𝜑 → Fun 𝐾)
20 nnuz 12618 . . . . . . 7 ℕ = (ℤ‘1)
218, 20eleqtrdi 2851 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
22 eluzfz1 13260 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2321, 22syl 17 . . . . 5 (𝜑 → 1 ∈ (1...𝑁))
24 fveq2 6769 . . . . . 6 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
2524ssiun2s 4983 . . . . 5 (1 ∈ (1...𝑁) → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2623, 25syl 17 . . . 4 (𝜑 → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2726, 13sseqtrrdi 3977 . . 3 (𝜑 → (𝑄‘1) ⊆ 𝐾)
28 0xr 11021 . . . . . . 7 0 ∈ ℝ*
2928a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
308nnrecred 12022 . . . . . . 7 (𝜑 → (1 / 𝑁) ∈ ℝ)
3130rexrd 11024 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ*)
32 1red 10975 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
33 0le1 11496 . . . . . . . 8 0 ≤ 1
3433a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 1)
358nnred 11986 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
368nngt0d 12020 . . . . . . 7 (𝜑 → 0 < 𝑁)
37 divge0 11842 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (1 / 𝑁))
3832, 34, 35, 36, 37syl22anc 836 . . . . . 6 (𝜑 → 0 ≤ (1 / 𝑁))
39 lbicc2 13193 . . . . . 6 ((0 ∈ ℝ* ∧ (1 / 𝑁) ∈ ℝ* ∧ 0 ≤ (1 / 𝑁)) → 0 ∈ (0[,](1 / 𝑁)))
4029, 31, 38, 39syl3anc 1370 . . . . 5 (𝜑 → 0 ∈ (0[,](1 / 𝑁)))
41 1m1e0 12043 . . . . . . . 8 (1 − 1) = 0
4241oveq1i 7279 . . . . . . 7 ((1 − 1) / 𝑁) = (0 / 𝑁)
438nncnd 11987 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
448nnne0d 12021 . . . . . . . 8 (𝜑𝑁 ≠ 0)
4543, 44div0d 11748 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
4642, 45eqtrid 2792 . . . . . 6 (𝜑 → ((1 − 1) / 𝑁) = 0)
4746oveq1d 7284 . . . . 5 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
4840, 47eleqtrrd 2844 . . . 4 (𝜑 → 0 ∈ (((1 − 1) / 𝑁)[,](1 / 𝑁)))
49 eqid 2740 . . . . . . . 8 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
50 simpr 485 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49cvmliftlem7 33247 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49, 50, 51cvmliftlem6 33246 . . . . . . 7 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5323, 52mpdan 684 . . . . . 6 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5453simpld 495 . . . . 5 (𝜑 → (𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵)
5554fdmd 6608 . . . 4 (𝜑 → dom (𝑄‘1) = (((1 − 1) / 𝑁)[,](1 / 𝑁)))
5648, 55eleqtrrd 2844 . . 3 (𝜑 → 0 ∈ dom (𝑄‘1))
57 funssfv 6790 . . 3 ((Fun 𝐾 ∧ (𝑄‘1) ⊆ 𝐾 ∧ 0 ∈ dom (𝑄‘1)) → (𝐾‘0) = ((𝑄‘1)‘0))
5819, 27, 56, 57syl3anc 1370 . 2 (𝜑 → (𝐾‘0) = ((𝑄‘1)‘0))
591, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem9 33249 . . . 4 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6023, 59mpdan 684 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6146fveq2d 6773 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘1)‘0))
6241fveq2i 6772 . . . . . 6 (𝑄‘(1 − 1)) = (𝑄‘0)
631, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem4 33244 . . . . . 6 (𝑄‘0) = {⟨0, 𝑃⟩}
6462, 63eqtri 2768 . . . . 5 (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩}
6564a1i 11 . . . 4 (𝜑 → (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩})
6665, 46fveq12d 6776 . . 3 (𝜑 → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
6760, 61, 663eqtr3d 2788 . 2 (𝜑 → ((𝑄‘1)‘0) = ({⟨0, 𝑃⟩}‘0))
68 0nn0 12246 . . 3 0 ∈ ℕ0
69 fvsng 7047 . . 3 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7068, 6, 69sylancr 587 . 2 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7158, 67, 703eqtrd 2784 1 (𝜑 → (𝐾‘0) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  {crab 3070  Vcvv 3431  cdif 3889  cun 3890  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  {csn 4567  cop 4573   cuni 4845   ciun 4930   class class class wbr 5079  cmpt 5162   I cid 5488   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6425  wf 6427  cfv 6431  crio 7225  (class class class)co 7269  cmpo 7271  1st c1st 7820  2nd c2nd 7821  cr 10869  0cc0 10870  1c1 10871  *cxr 11007   < clt 11008  cle 11009  cmin 11203   / cdiv 11630  cn 11971  0cn0 12231  cuz 12579  (,)cioo 13076  [,]cicc 13079  ...cfz 13236  seqcseq 13717  t crest 17127  topGenctg 17144   Cn ccn 22371  Homeochmeo 22900  IIcii 24034   CovMap ccvm 33211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fi 9146  df-sup 9177  df-inf 9178  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-icc 13083  df-fz 13237  df-seq 13718  df-exp 13779  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-rest 17129  df-topgen 17150  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-top 22039  df-topon 22056  df-bases 22092  df-cld 22166  df-cn 22374  df-hmeo 22902  df-ii 24036  df-cvm 33212
This theorem is referenced by:  cvmliftlem14  33253
  Copyright terms: Public domain W3C validator