Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem13 Structured version   Visualization version   GIF version

Theorem cvmliftlem13 32651
 Description: Lemma for cvmlift 32654. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
Assertion
Ref Expression
cvmliftlem13 (𝜑 → (𝐾‘0) = 𝑃)
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem13
StepHypRef Expression
1 cvmliftlem.1 . . . . . . 7 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . 7 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . 7 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . 7 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . 7 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . 7 𝐿 = (topGen‘ran (,))
12 cvmliftlem.q . . . . . . 7 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
13 cvmliftlem.k . . . . . . 7 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 32650 . . . . . 6 (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
1514simpld 498 . . . . 5 (𝜑𝐾 ∈ (II Cn 𝐶))
16 iiuni 23489 . . . . . 6 (0[,]1) = II
1716, 2cnf 21854 . . . . 5 (𝐾 ∈ (II Cn 𝐶) → 𝐾:(0[,]1)⟶𝐵)
1815, 17syl 17 . . . 4 (𝜑𝐾:(0[,]1)⟶𝐵)
1918ffund 6495 . . 3 (𝜑 → Fun 𝐾)
20 nnuz 12273 . . . . . . 7 ℕ = (ℤ‘1)
218, 20eleqtrdi 2903 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
22 eluzfz1 12913 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2321, 22syl 17 . . . . 5 (𝜑 → 1 ∈ (1...𝑁))
24 fveq2 6649 . . . . . 6 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
2524ssiun2s 4938 . . . . 5 (1 ∈ (1...𝑁) → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2623, 25syl 17 . . . 4 (𝜑 → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2726, 13sseqtrrdi 3969 . . 3 (𝜑 → (𝑄‘1) ⊆ 𝐾)
28 0xr 10681 . . . . . . 7 0 ∈ ℝ*
2928a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
308nnrecred 11680 . . . . . . 7 (𝜑 → (1 / 𝑁) ∈ ℝ)
3130rexrd 10684 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ*)
32 1red 10635 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
33 0le1 11156 . . . . . . . 8 0 ≤ 1
3433a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 1)
358nnred 11644 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
368nngt0d 11678 . . . . . . 7 (𝜑 → 0 < 𝑁)
37 divge0 11502 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (1 / 𝑁))
3832, 34, 35, 36, 37syl22anc 837 . . . . . 6 (𝜑 → 0 ≤ (1 / 𝑁))
39 lbicc2 12846 . . . . . 6 ((0 ∈ ℝ* ∧ (1 / 𝑁) ∈ ℝ* ∧ 0 ≤ (1 / 𝑁)) → 0 ∈ (0[,](1 / 𝑁)))
4029, 31, 38, 39syl3anc 1368 . . . . 5 (𝜑 → 0 ∈ (0[,](1 / 𝑁)))
41 1m1e0 11701 . . . . . . . 8 (1 − 1) = 0
4241oveq1i 7149 . . . . . . 7 ((1 − 1) / 𝑁) = (0 / 𝑁)
438nncnd 11645 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
448nnne0d 11679 . . . . . . . 8 (𝜑𝑁 ≠ 0)
4543, 44div0d 11408 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
4642, 45syl5eq 2848 . . . . . 6 (𝜑 → ((1 − 1) / 𝑁) = 0)
4746oveq1d 7154 . . . . 5 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
4840, 47eleqtrrd 2896 . . . 4 (𝜑 → 0 ∈ (((1 − 1) / 𝑁)[,](1 / 𝑁)))
49 eqid 2801 . . . . . . . 8 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
50 simpr 488 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49cvmliftlem7 32646 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49, 50, 51cvmliftlem6 32645 . . . . . . 7 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5323, 52mpdan 686 . . . . . 6 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5453simpld 498 . . . . 5 (𝜑 → (𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵)
5554fdmd 6501 . . . 4 (𝜑 → dom (𝑄‘1) = (((1 − 1) / 𝑁)[,](1 / 𝑁)))
5648, 55eleqtrrd 2896 . . 3 (𝜑 → 0 ∈ dom (𝑄‘1))
57 funssfv 6670 . . 3 ((Fun 𝐾 ∧ (𝑄‘1) ⊆ 𝐾 ∧ 0 ∈ dom (𝑄‘1)) → (𝐾‘0) = ((𝑄‘1)‘0))
5819, 27, 56, 57syl3anc 1368 . 2 (𝜑 → (𝐾‘0) = ((𝑄‘1)‘0))
591, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem9 32648 . . . 4 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6023, 59mpdan 686 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6146fveq2d 6653 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘1)‘0))
6241fveq2i 6652 . . . . . 6 (𝑄‘(1 − 1)) = (𝑄‘0)
631, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem4 32643 . . . . . 6 (𝑄‘0) = {⟨0, 𝑃⟩}
6462, 63eqtri 2824 . . . . 5 (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩}
6564a1i 11 . . . 4 (𝜑 → (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩})
6665, 46fveq12d 6656 . . 3 (𝜑 → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
6760, 61, 663eqtr3d 2844 . 2 (𝜑 → ((𝑄‘1)‘0) = ({⟨0, 𝑃⟩}‘0))
68 0nn0 11904 . . 3 0 ∈ ℕ0
69 fvsng 6923 . . 3 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7068, 6, 69sylancr 590 . 2 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7158, 67, 703eqtrd 2840 1 (𝜑 → (𝐾‘0) = 𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  {crab 3113  Vcvv 3444   ∖ cdif 3881   ∪ cun 3882   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246  𝒫 cpw 4500  {csn 4528  ⟨cop 4534  ∪ cuni 4803  ∪ ciun 4884   class class class wbr 5033   ↦ cmpt 5113   I cid 5427   × cxp 5521  ◡ccnv 5522  dom cdm 5523  ran crn 5524   ↾ cres 5525   “ cima 5526   ∘ ccom 5527  Fun wfun 6322  ⟶wf 6324  ‘cfv 6328  ℩crio 7096  (class class class)co 7139   ∈ cmpo 7141  1st c1st 7673  2nd c2nd 7674  ℝcr 10529  0cc0 10530  1c1 10531  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   − cmin 10863   / cdiv 11290  ℕcn 11629  ℕ0cn0 11889  ℤ≥cuz 12235  (,)cioo 12730  [,]cicc 12733  ...cfz 12889  seqcseq 13368   ↾t crest 16689  topGenctg 16706   Cn ccn 21832  Homeochmeo 22361  IIcii 23483   CovMap ccvm 32610 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-icc 12737  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-rest 16691  df-topgen 16712  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-cn 21835  df-hmeo 22363  df-ii 23485  df-cvm 32611 This theorem is referenced by:  cvmliftlem14  32652
 Copyright terms: Public domain W3C validator