MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaval Structured version   Visualization version   GIF version

Theorem imasvscaval 17166
Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscaval ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞   𝑋,𝑝   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑋(𝑞,𝑎)   𝑌(𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . . . . . 7 (𝜑𝑅𝑍)
5 imasvscaf.g . . . . . . 7 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . . . . . 7 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . . . . . 7 · = ( ·𝑠𝑅)
8 imasvscaf.s . . . . . . 7 = ( ·𝑠𝑈)
9 imasvscaf.e . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 17165 . . . . . 6 (𝜑 Fn (𝐾 × 𝐵))
11 fnfun 6517 . . . . . 6 ( Fn (𝐾 × 𝐵) → Fun )
1210, 11syl 17 . . . . 5 (𝜑 → Fun )
13123ad2ant1 1131 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → Fun )
14 eqidd 2739 . . . . . . . 8 (𝑞 = 𝑌𝐾 = 𝐾)
15 fveq2 6756 . . . . . . . . 9 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1615sneqd 4570 . . . . . . . 8 (𝑞 = 𝑌 → {(𝐹𝑞)} = {(𝐹𝑌)})
17 oveq2 7263 . . . . . . . . 9 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1817fveq2d 6760 . . . . . . . 8 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
1914, 16, 18mpoeq123dv 7328 . . . . . . 7 (𝑞 = 𝑌 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
2019ssiun2s 4974 . . . . . 6 (𝑌𝑉 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
21203ad2ant3 1133 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
221, 2, 3, 4, 5, 6, 7, 8imasvsca 17148 . . . . . 6 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
23223ad2ant1 1131 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
2421, 23sseqtrrd 3958 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ )
25 simp2 1135 . . . . . 6 ((𝜑𝑋𝐾𝑌𝑉) → 𝑋𝐾)
26 fvex 6769 . . . . . . 7 (𝐹𝑌) ∈ V
2726snid 4594 . . . . . 6 (𝐹𝑌) ∈ {(𝐹𝑌)}
28 opelxpi 5617 . . . . . 6 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
2925, 27, 28sylancl 585 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
30 eqid 2738 . . . . . 6 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))
31 fvex 6769 . . . . . 6 (𝐹‘(𝑝 · 𝑌)) ∈ V
3230, 31dmmpo 7884 . . . . 5 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝐾 × {(𝐹𝑌)})
3329, 32eleqtrrdi 2850 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
34 funssfv 6777 . . . 4 ((Fun ∧ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ ∧ ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
3513, 24, 33, 34syl3anc 1369 . . 3 ((𝜑𝑋𝐾𝑌𝑉) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
36 df-ov 7258 . . 3 (𝑋 (𝐹𝑌)) = ( ‘⟨𝑋, (𝐹𝑌)⟩)
37 df-ov 7258 . . 3 (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩)
3835, 36, 373eqtr4g 2804 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)))
39 fvoveq1 7278 . . . 4 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
40 eqidd 2739 . . . 4 (𝑥 = (𝐹𝑌) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
41 fvex 6769 . . . 4 (𝐹‘(𝑋 · 𝑌)) ∈ V
4239, 40, 30, 41ovmpo 7411 . . 3 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4325, 27, 42sylancl 585 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4438, 43eqtrd 2778 1 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  {csn 4558  cop 4564   ciun 4921   × cxp 5578  dom cdm 5580  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  s cimas 17132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-imas 17136
This theorem is referenced by:  xpsvsca  17205  qusscaval  31454  imaslmod  31455  quslmhm  31457
  Copyright terms: Public domain W3C validator