MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaval Structured version   Visualization version   GIF version

Theorem imasvscaval 16811
Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscaval ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞   𝑋,𝑝   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑋(𝑞,𝑎)   𝑌(𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . . . . . 7 (𝜑𝑅𝑍)
5 imasvscaf.g . . . . . . 7 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . . . . . 7 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . . . . . 7 · = ( ·𝑠𝑅)
8 imasvscaf.s . . . . . . 7 = ( ·𝑠𝑈)
9 imasvscaf.e . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 16810 . . . . . 6 (𝜑 Fn (𝐾 × 𝐵))
11 fnfun 6453 . . . . . 6 ( Fn (𝐾 × 𝐵) → Fun )
1210, 11syl 17 . . . . 5 (𝜑 → Fun )
13123ad2ant1 1129 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → Fun )
14 eqidd 2822 . . . . . . . 8 (𝑞 = 𝑌𝐾 = 𝐾)
15 fveq2 6670 . . . . . . . . 9 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1615sneqd 4579 . . . . . . . 8 (𝑞 = 𝑌 → {(𝐹𝑞)} = {(𝐹𝑌)})
17 oveq2 7164 . . . . . . . . 9 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1817fveq2d 6674 . . . . . . . 8 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
1914, 16, 18mpoeq123dv 7229 . . . . . . 7 (𝑞 = 𝑌 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
2019ssiun2s 4972 . . . . . 6 (𝑌𝑉 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
21203ad2ant3 1131 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
221, 2, 3, 4, 5, 6, 7, 8imasvsca 16793 . . . . . 6 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
23223ad2ant1 1129 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
2421, 23sseqtrrd 4008 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ )
25 simp2 1133 . . . . . 6 ((𝜑𝑋𝐾𝑌𝑉) → 𝑋𝐾)
26 fvex 6683 . . . . . . 7 (𝐹𝑌) ∈ V
2726snid 4601 . . . . . 6 (𝐹𝑌) ∈ {(𝐹𝑌)}
28 opelxpi 5592 . . . . . 6 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
2925, 27, 28sylancl 588 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
30 eqid 2821 . . . . . 6 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))
31 fvex 6683 . . . . . 6 (𝐹‘(𝑝 · 𝑌)) ∈ V
3230, 31dmmpo 7769 . . . . 5 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝐾 × {(𝐹𝑌)})
3329, 32eleqtrrdi 2924 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
34 funssfv 6691 . . . 4 ((Fun ∧ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ ∧ ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
3513, 24, 33, 34syl3anc 1367 . . 3 ((𝜑𝑋𝐾𝑌𝑉) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
36 df-ov 7159 . . 3 (𝑋 (𝐹𝑌)) = ( ‘⟨𝑋, (𝐹𝑌)⟩)
37 df-ov 7159 . . 3 (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩)
3835, 36, 373eqtr4g 2881 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)))
39 fvoveq1 7179 . . . 4 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
40 eqidd 2822 . . . 4 (𝑥 = (𝐹𝑌) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
41 fvex 6683 . . . 4 (𝐹‘(𝑋 · 𝑌)) ∈ V
4239, 40, 30, 41ovmpo 7310 . . 3 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4325, 27, 42sylancl 588 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4438, 43eqtrd 2856 1 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  {csn 4567  cop 4573   ciun 4919   × cxp 5553  dom cdm 5555  Fun wfun 6349   Fn wfn 6350  ontowfo 6353  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  s cimas 16777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-imas 16781
This theorem is referenced by:  xpsvsca  16850  qusscaval  30921  imaslmod  30922  quslmhm  30924
  Copyright terms: Public domain W3C validator