MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaval Structured version   Visualization version   GIF version

Theorem imasvscaval 17461
Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscaval ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞   𝑋,𝑝   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑋(𝑞,𝑎)   𝑌(𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . . . . . 7 (𝜑𝑅𝑍)
5 imasvscaf.g . . . . . . 7 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . . . . . 7 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . . . . . 7 · = ( ·𝑠𝑅)
8 imasvscaf.s . . . . . . 7 = ( ·𝑠𝑈)
9 imasvscaf.e . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 17460 . . . . . 6 (𝜑 Fn (𝐾 × 𝐵))
11 fnfun 6586 . . . . . 6 ( Fn (𝐾 × 𝐵) → Fun )
1210, 11syl 17 . . . . 5 (𝜑 → Fun )
13123ad2ant1 1133 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → Fun )
14 eqidd 2730 . . . . . . . 8 (𝑞 = 𝑌𝐾 = 𝐾)
15 fveq2 6826 . . . . . . . . 9 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1615sneqd 4591 . . . . . . . 8 (𝑞 = 𝑌 → {(𝐹𝑞)} = {(𝐹𝑌)})
17 oveq2 7361 . . . . . . . . 9 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1817fveq2d 6830 . . . . . . . 8 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
1914, 16, 18mpoeq123dv 7428 . . . . . . 7 (𝑞 = 𝑌 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
2019ssiun2s 5000 . . . . . 6 (𝑌𝑉 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
21203ad2ant3 1135 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
221, 2, 3, 4, 5, 6, 7, 8imasvsca 17443 . . . . . 6 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
23223ad2ant1 1133 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
2421, 23sseqtrrd 3975 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ )
25 simp2 1137 . . . . . 6 ((𝜑𝑋𝐾𝑌𝑉) → 𝑋𝐾)
26 fvex 6839 . . . . . . 7 (𝐹𝑌) ∈ V
2726snid 4616 . . . . . 6 (𝐹𝑌) ∈ {(𝐹𝑌)}
28 opelxpi 5660 . . . . . 6 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
2925, 27, 28sylancl 586 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
30 eqid 2729 . . . . . 6 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))
31 fvex 6839 . . . . . 6 (𝐹‘(𝑝 · 𝑌)) ∈ V
3230, 31dmmpo 8013 . . . . 5 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝐾 × {(𝐹𝑌)})
3329, 32eleqtrrdi 2839 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
34 funssfv 6847 . . . 4 ((Fun ∧ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ ∧ ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
3513, 24, 33, 34syl3anc 1373 . . 3 ((𝜑𝑋𝐾𝑌𝑉) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
36 df-ov 7356 . . 3 (𝑋 (𝐹𝑌)) = ( ‘⟨𝑋, (𝐹𝑌)⟩)
37 df-ov 7356 . . 3 (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩)
3835, 36, 373eqtr4g 2789 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)))
39 fvoveq1 7376 . . . 4 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
40 eqidd 2730 . . . 4 (𝑥 = (𝐹𝑌) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
41 fvex 6839 . . . 4 (𝐹‘(𝑋 · 𝑌)) ∈ V
4239, 40, 30, 41ovmpo 7513 . . 3 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4325, 27, 42sylancl 586 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4438, 43eqtrd 2764 1 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  {csn 4579  cop 4585   ciun 4944   × cxp 5621  dom cdm 5623  Fun wfun 6480   Fn wfn 6481  ontowfo 6484  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17139  Scalarcsca 17183   ·𝑠 cvsca 17184  s cimas 17427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-imas 17431
This theorem is referenced by:  xpsvsca  17500  lmhmimasvsca  33012  qusvsval  33308  imaslmod  33309  imaslmhm  33313  quslmhm  33315
  Copyright terms: Public domain W3C validator