MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaval Structured version   Visualization version   GIF version

Theorem imasvscaval 16811
Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscaval ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞   𝑋,𝑝   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑋(𝑞,𝑎)   𝑌(𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . . . . . 7 (𝜑𝑅𝑍)
5 imasvscaf.g . . . . . . 7 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . . . . . 7 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . . . . . 7 · = ( ·𝑠𝑅)
8 imasvscaf.s . . . . . . 7 = ( ·𝑠𝑈)
9 imasvscaf.e . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 16810 . . . . . 6 (𝜑 Fn (𝐾 × 𝐵))
11 fnfun 6441 . . . . . 6 ( Fn (𝐾 × 𝐵) → Fun )
1210, 11syl 17 . . . . 5 (𝜑 → Fun )
13123ad2ant1 1130 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → Fun )
14 eqidd 2825 . . . . . . . 8 (𝑞 = 𝑌𝐾 = 𝐾)
15 fveq2 6661 . . . . . . . . 9 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1615sneqd 4562 . . . . . . . 8 (𝑞 = 𝑌 → {(𝐹𝑞)} = {(𝐹𝑌)})
17 oveq2 7157 . . . . . . . . 9 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1817fveq2d 6665 . . . . . . . 8 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
1914, 16, 18mpoeq123dv 7222 . . . . . . 7 (𝑞 = 𝑌 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
2019ssiun2s 4958 . . . . . 6 (𝑌𝑉 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
21203ad2ant3 1132 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
221, 2, 3, 4, 5, 6, 7, 8imasvsca 16793 . . . . . 6 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
23223ad2ant1 1130 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
2421, 23sseqtrrd 3994 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ )
25 simp2 1134 . . . . . 6 ((𝜑𝑋𝐾𝑌𝑉) → 𝑋𝐾)
26 fvex 6674 . . . . . . 7 (𝐹𝑌) ∈ V
2726snid 4586 . . . . . 6 (𝐹𝑌) ∈ {(𝐹𝑌)}
28 opelxpi 5579 . . . . . 6 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
2925, 27, 28sylancl 589 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
30 eqid 2824 . . . . . 6 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))
31 fvex 6674 . . . . . 6 (𝐹‘(𝑝 · 𝑌)) ∈ V
3230, 31dmmpo 7764 . . . . 5 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝐾 × {(𝐹𝑌)})
3329, 32eleqtrrdi 2927 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
34 funssfv 6682 . . . 4 ((Fun ∧ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ ∧ ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
3513, 24, 33, 34syl3anc 1368 . . 3 ((𝜑𝑋𝐾𝑌𝑉) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
36 df-ov 7152 . . 3 (𝑋 (𝐹𝑌)) = ( ‘⟨𝑋, (𝐹𝑌)⟩)
37 df-ov 7152 . . 3 (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩)
3835, 36, 373eqtr4g 2884 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)))
39 fvoveq1 7172 . . . 4 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
40 eqidd 2825 . . . 4 (𝑥 = (𝐹𝑌) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
41 fvex 6674 . . . 4 (𝐹‘(𝑋 · 𝑌)) ∈ V
4239, 40, 30, 41ovmpo 7303 . . 3 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4325, 27, 42sylancl 589 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4438, 43eqtrd 2859 1 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wss 3919  {csn 4550  cop 4556   ciun 4905   × cxp 5540  dom cdm 5542  Fun wfun 6337   Fn wfn 6338  ontowfo 6341  cfv 6343  (class class class)co 7149  cmpo 7151  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  s cimas 16777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-imas 16781
This theorem is referenced by:  xpsvsca  16850  qusscaval  30957  imaslmod  30958  quslmhm  30960
  Copyright terms: Public domain W3C validator