MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaval Structured version   Visualization version   GIF version

Theorem imasvscaval 16803
Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscaval ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞   𝑋,𝑝   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑋(𝑞,𝑎)   𝑌(𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . . . . . 7 (𝜑𝑅𝑍)
5 imasvscaf.g . . . . . . 7 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . . . . . 7 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . . . . . 7 · = ( ·𝑠𝑅)
8 imasvscaf.s . . . . . . 7 = ( ·𝑠𝑈)
9 imasvscaf.e . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 16802 . . . . . 6 (𝜑 Fn (𝐾 × 𝐵))
11 fnfun 6423 . . . . . 6 ( Fn (𝐾 × 𝐵) → Fun )
1210, 11syl 17 . . . . 5 (𝜑 → Fun )
13123ad2ant1 1130 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → Fun )
14 eqidd 2799 . . . . . . . 8 (𝑞 = 𝑌𝐾 = 𝐾)
15 fveq2 6645 . . . . . . . . 9 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1615sneqd 4537 . . . . . . . 8 (𝑞 = 𝑌 → {(𝐹𝑞)} = {(𝐹𝑌)})
17 oveq2 7143 . . . . . . . . 9 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
1817fveq2d 6649 . . . . . . . 8 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
1914, 16, 18mpoeq123dv 7208 . . . . . . 7 (𝑞 = 𝑌 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
2019ssiun2s 4935 . . . . . 6 (𝑌𝑉 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
21203ad2ant3 1132 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
221, 2, 3, 4, 5, 6, 7, 8imasvsca 16785 . . . . . 6 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
23223ad2ant1 1130 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
2421, 23sseqtrrd 3956 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ )
25 simp2 1134 . . . . . 6 ((𝜑𝑋𝐾𝑌𝑉) → 𝑋𝐾)
26 fvex 6658 . . . . . . 7 (𝐹𝑌) ∈ V
2726snid 4561 . . . . . 6 (𝐹𝑌) ∈ {(𝐹𝑌)}
28 opelxpi 5556 . . . . . 6 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
2925, 27, 28sylancl 589 . . . . 5 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ (𝐾 × {(𝐹𝑌)}))
30 eqid 2798 . . . . . 6 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))
31 fvex 6658 . . . . . 6 (𝐹‘(𝑝 · 𝑌)) ∈ V
3230, 31dmmpo 7751 . . . . 5 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) = (𝐾 × {(𝐹𝑌)})
3329, 32eleqtrrdi 2901 . . . 4 ((𝜑𝑋𝐾𝑌𝑉) → ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))))
34 funssfv 6666 . . . 4 ((Fun ∧ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌))) ⊆ ∧ ⟨𝑋, (𝐹𝑌)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
3513, 24, 33, 34syl3anc 1368 . . 3 ((𝜑𝑋𝐾𝑌𝑉) → ( ‘⟨𝑋, (𝐹𝑌)⟩) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩))
36 df-ov 7138 . . 3 (𝑋 (𝐹𝑌)) = ( ‘⟨𝑋, (𝐹𝑌)⟩)
37 df-ov 7138 . . 3 (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))‘⟨𝑋, (𝐹𝑌)⟩)
3835, 36, 373eqtr4g 2858 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)))
39 fvoveq1 7158 . . . 4 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
40 eqidd 2799 . . . 4 (𝑥 = (𝐹𝑌) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
41 fvex 6658 . . . 4 (𝐹‘(𝑋 · 𝑌)) ∈ V
4239, 40, 30, 41ovmpo 7289 . . 3 ((𝑋𝐾 ∧ (𝐹𝑌) ∈ {(𝐹𝑌)}) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4325, 27, 42sylancl 589 . 2 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋(𝑝𝐾, 𝑥 ∈ {(𝐹𝑌)} ↦ (𝐹‘(𝑝 · 𝑌)))(𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
4438, 43eqtrd 2833 1 ((𝜑𝑋𝐾𝑌𝑉) → (𝑋 (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  {csn 4525  cop 4531   ciun 4881   × cxp 5517  dom cdm 5519  Fun wfun 6318   Fn wfn 6319  ontowfo 6322  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  s cimas 16769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-imas 16773
This theorem is referenced by:  xpsvsca  16842  qusscaval  30972  imaslmod  30973  quslmhm  30975
  Copyright terms: Public domain W3C validator