MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcls Structured version   Visualization version   GIF version

Theorem blcls 23117
Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcls ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcls
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
2 blcld.3 . . 3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
31, 2blcld 23116 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
4 blssm 23029 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
5 elbl 22999 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅)))
6 xmetcl 22942 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
763expa 1115 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
873adantl3 1165 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
9 simpl3 1190 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
10 xrltle 12534 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
118, 9, 10syl2anc 587 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
1211expimpd 457 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
135, 12sylbid 243 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
1413ralrimiv 3151 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅)
15 ssrab 4003 . . . 4 ((𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝑋 ∧ ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅))
164, 14, 15sylanbrc 586 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
1716, 2sseqtrrdi 3969 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆)
18 eqid 2801 . . 3 𝐽 = 𝐽
1918clsss2 21681 . 2 ((𝑆 ∈ (Clsd‘𝐽) ∧ (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
203, 17, 19syl2anc 587 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  {crab 3113  wss 3884   cuni 4803   class class class wbr 5033  cfv 6328  (class class class)co 7139  *cxr 10667   < clt 10668  cle 10669  ∞Metcxmet 20080  ballcbl 20082  MetOpencmopn 20085  Clsdccld 21625  clsccl 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-bl 20090  df-mopn 20091  df-top 21503  df-topon 21520  df-bases 21555  df-cld 21628  df-cls 21630
This theorem is referenced by:  blsscls  23118  cnllycmp  23565  cncmet  23930
  Copyright terms: Public domain W3C validator