MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcls Structured version   Visualization version   GIF version

Theorem blcls 24419
Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcls ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcls
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
2 blcld.3 . . 3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
31, 2blcld 24418 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
4 blssm 24331 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
5 elbl 24301 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅)))
6 xmetcl 24244 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
763expa 1118 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
873adantl3 1169 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
9 simpl3 1194 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
10 xrltle 13045 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
118, 9, 10syl2anc 584 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
1211expimpd 453 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
135, 12sylbid 240 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
1413ralrimiv 3123 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅)
15 ssrab 4023 . . . 4 ((𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝑋 ∧ ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅))
164, 14, 15sylanbrc 583 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
1716, 2sseqtrrdi 3976 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆)
18 eqid 2731 . . 3 𝐽 = 𝐽
1918clsss2 22985 . 2 ((𝑆 ∈ (Clsd‘𝐽) ∧ (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
203, 17, 19syl2anc 584 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3902   cuni 4859   class class class wbr 5091  cfv 6481  (class class class)co 7346  *cxr 11142   < clt 11143  cle 11144  ∞Metcxmet 21274  ballcbl 21276  MetOpencmopn 21279  Clsdccld 22929  clsccl 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-bl 21284  df-mopn 21285  df-top 22807  df-topon 22824  df-bases 22859  df-cld 22932  df-cls 22934
This theorem is referenced by:  blsscls  24420  cnllycmp  24880  cncmet  25247
  Copyright terms: Public domain W3C validator