MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressatans Structured version   Visualization version   GIF version

Theorem ressatans 26877
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
ressatans ℝ ⊆ 𝑆
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ressatans
StepHypRef Expression
1 ax-resscn 11101 . . 3 ℝ ⊆ ℂ
2 1re 11150 . . . . . . . 8 1 ∈ ℝ
3 resqcl 14065 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦↑2) ∈ ℝ)
4 readdcl 11127 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (1 + (𝑦↑2)) ∈ ℝ)
52, 3, 4sylancr 587 . . . . . . 7 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℝ)
65recnd 11178 . . . . . 6 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℂ)
72a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ∈ ℝ)
8 0lt1 11676 . . . . . . . . . 10 0 < 1
98a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 < 1)
10 sqge0 14077 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 ≤ (𝑦↑2))
117, 3, 9, 10addgtge0d 11728 . . . . . . . 8 (𝑦 ∈ ℝ → 0 < (1 + (𝑦↑2)))
12 0re 11152 . . . . . . . . 9 0 ∈ ℝ
13 ltnle 11229 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 + (𝑦↑2)) ∈ ℝ) → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1412, 5, 13sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1511, 14mpbid 232 . . . . . . 7 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ≤ 0)
16 mnfxr 11207 . . . . . . . . 9 -∞ ∈ ℝ*
17 elioc2 13346 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0)))
1816, 12, 17mp2an 692 . . . . . . . 8 ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0))
1918simp3bi 1147 . . . . . . 7 ((1 + (𝑦↑2)) ∈ (-∞(,]0) → (1 + (𝑦↑2)) ≤ 0)
2015, 19nsyl 140 . . . . . 6 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ∈ (-∞(,]0))
216, 20eldifd 3922 . . . . 5 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ (ℂ ∖ (-∞(,]0)))
22 atansopn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
2321, 22eleqtrrdi 2839 . . . 4 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ 𝐷)
2423rgen 3046 . . 3 𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷
25 ssrab 4032 . . 3 (ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ↔ (ℝ ⊆ ℂ ∧ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷))
261, 24, 25mpbir2an 711 . 2 ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
27 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
2826, 27sseqtrri 3993 1 ℝ ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cdif 3908  wss 3911   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  2c2 12217  (,]cioc 13283  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-ioc 13287  df-seq 13943  df-exp 14003
This theorem is referenced by:  leibpi  26885
  Copyright terms: Public domain W3C validator