MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressatans Structured version   Visualization version   GIF version

Theorem ressatans 26844
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
ressatans ℝ ⊆ 𝑆
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ressatans
StepHypRef Expression
1 ax-resscn 11125 . . 3 ℝ ⊆ ℂ
2 1re 11174 . . . . . . . 8 1 ∈ ℝ
3 resqcl 14089 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦↑2) ∈ ℝ)
4 readdcl 11151 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (1 + (𝑦↑2)) ∈ ℝ)
52, 3, 4sylancr 587 . . . . . . 7 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℝ)
65recnd 11202 . . . . . 6 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℂ)
72a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ∈ ℝ)
8 0lt1 11700 . . . . . . . . . 10 0 < 1
98a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 < 1)
10 sqge0 14101 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 ≤ (𝑦↑2))
117, 3, 9, 10addgtge0d 11752 . . . . . . . 8 (𝑦 ∈ ℝ → 0 < (1 + (𝑦↑2)))
12 0re 11176 . . . . . . . . 9 0 ∈ ℝ
13 ltnle 11253 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 + (𝑦↑2)) ∈ ℝ) → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1412, 5, 13sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1511, 14mpbid 232 . . . . . . 7 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ≤ 0)
16 mnfxr 11231 . . . . . . . . 9 -∞ ∈ ℝ*
17 elioc2 13370 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0)))
1816, 12, 17mp2an 692 . . . . . . . 8 ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0))
1918simp3bi 1147 . . . . . . 7 ((1 + (𝑦↑2)) ∈ (-∞(,]0) → (1 + (𝑦↑2)) ≤ 0)
2015, 19nsyl 140 . . . . . 6 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ∈ (-∞(,]0))
216, 20eldifd 3925 . . . . 5 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ (ℂ ∖ (-∞(,]0)))
22 atansopn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
2321, 22eleqtrrdi 2839 . . . 4 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ 𝐷)
2423rgen 3046 . . 3 𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷
25 ssrab 4036 . . 3 (ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ↔ (ℝ ⊆ ℂ ∧ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷))
261, 24, 25mpbir2an 711 . 2 ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
27 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
2826, 27sseqtrri 3996 1 ℝ ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  wss 3914   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  2c2 12241  (,]cioc 13307  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-ioc 13311  df-seq 13967  df-exp 14027
This theorem is referenced by:  leibpi  26852
  Copyright terms: Public domain W3C validator