Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressatans | Structured version Visualization version GIF version |
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
Ref | Expression |
---|---|
ressatans | ⊢ ℝ ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 10859 | . . 3 ⊢ ℝ ⊆ ℂ | |
2 | 1re 10906 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
3 | resqcl 13772 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦↑2) ∈ ℝ) | |
4 | readdcl 10885 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (1 + (𝑦↑2)) ∈ ℝ) | |
5 | 2, 3, 4 | sylancr 586 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℝ) |
6 | 5 | recnd 10934 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℂ) |
7 | 2 | a1i 11 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → 1 ∈ ℝ) |
8 | 0lt1 11427 | . . . . . . . . . 10 ⊢ 0 < 1 | |
9 | 8 | a1i 11 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → 0 < 1) |
10 | sqge0 13783 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → 0 ≤ (𝑦↑2)) | |
11 | 7, 3, 9, 10 | addgtge0d 11479 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 0 < (1 + (𝑦↑2))) |
12 | 0re 10908 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
13 | ltnle 10985 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ (1 + (𝑦↑2)) ∈ ℝ) → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0)) | |
14 | 12, 5, 13 | sylancr 586 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0)) |
15 | 11, 14 | mpbid 231 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ≤ 0) |
16 | mnfxr 10963 | . . . . . . . . 9 ⊢ -∞ ∈ ℝ* | |
17 | elioc2 13071 | . . . . . . . . 9 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0))) | |
18 | 16, 12, 17 | mp2an 688 | . . . . . . . 8 ⊢ ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0)) |
19 | 18 | simp3bi 1145 | . . . . . . 7 ⊢ ((1 + (𝑦↑2)) ∈ (-∞(,]0) → (1 + (𝑦↑2)) ≤ 0) |
20 | 15, 19 | nsyl 140 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ∈ (-∞(,]0)) |
21 | 6, 20 | eldifd 3894 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ (ℂ ∖ (-∞(,]0))) |
22 | atansopn.d | . . . . 5 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
23 | 21, 22 | eleqtrrdi 2850 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ 𝐷) |
24 | 23 | rgen 3073 | . . 3 ⊢ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷 |
25 | ssrab 4002 | . . 3 ⊢ (ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ↔ (ℝ ⊆ ℂ ∧ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷)) | |
26 | 1, 24, 25 | mpbir2an 707 | . 2 ⊢ ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
27 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
28 | 26, 27 | sseqtrri 3954 | 1 ⊢ ℝ ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 2c2 11958 (,]cioc 13009 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-ioc 13013 df-seq 13650 df-exp 13711 |
This theorem is referenced by: leibpi 25997 |
Copyright terms: Public domain | W3C validator |