MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscntz Structured version   Visualization version   GIF version

Theorem sscntz 19307
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
sscntz ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵   𝑥,𝑀,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem sscntz
StepHypRef Expression
1 cntzfval.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . . 5 + = (+g𝑀)
3 cntzfval.z . . . . 5 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19302 . . . 4 (𝑇𝐵 → (𝑍𝑇) = {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54sseq2d 3991 . . 3 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 ssrab 4048 . . 3 (𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
75, 6bitrdi 287 . 2 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
8 ibar 528 . . 3 (𝑆𝐵 → (∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
98bicomd 223 . 2 (𝑆𝐵 → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
107, 9sylan9bbr 510 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3051  {crab 3415  wss 3926  cfv 6530  (class class class)co 7403  Basecbs 17226  +gcplusg 17269  Cntzccntz 19296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-cntz 19298
This theorem is referenced by:  cntz2ss  19316  cntzrec  19317  submcmn2  19818  mplcoe5lem  21995  symgcntz  33042
  Copyright terms: Public domain W3C validator