| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscntz | Structured version Visualization version GIF version | ||
| Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzfval.p | ⊢ + = (+g‘𝑀) |
| cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| sscntz | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | cntzfval.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 3 | cntzfval.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 4 | 1, 2, 3 | cntzval 19200 | . . . 4 ⊢ (𝑇 ⊆ 𝐵 → (𝑍‘𝑇) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
| 5 | 4 | sseq2d 3968 | . . 3 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
| 6 | ssrab 4024 | . . 3 ⊢ (𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | |
| 7 | 5, 6 | bitrdi 287 | . 2 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) |
| 8 | ibar 528 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) | |
| 9 | 8 | bicomd 223 | . 2 ⊢ (𝑆 ⊆ 𝐵 → ((𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 10 | 7, 9 | sylan9bbr 510 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 {crab 3394 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Cntzccntz 19194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-cntz 19196 |
| This theorem is referenced by: cntz2ss 19214 cntzrec 19215 submcmn2 19718 mplcoe5lem 21944 symgcntz 33036 |
| Copyright terms: Public domain | W3C validator |