MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscntz Structured version   Visualization version   GIF version

Theorem sscntz 19258
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
sscntz ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵   𝑥,𝑀,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem sscntz
StepHypRef Expression
1 cntzfval.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . . 5 + = (+g𝑀)
3 cntzfval.z . . . . 5 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19253 . . . 4 (𝑇𝐵 → (𝑍𝑇) = {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54sseq2d 3979 . . 3 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 ssrab 4036 . . 3 (𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
75, 6bitrdi 287 . 2 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
8 ibar 528 . . 3 (𝑆𝐵 → (∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
98bicomd 223 . 2 (𝑆𝐵 → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
107, 9sylan9bbr 510 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3044  {crab 3405  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Cntzccntz 19247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-cntz 19249
This theorem is referenced by:  cntz2ss  19267  cntzrec  19268  submcmn2  19769  mplcoe5lem  21946  symgcntz  33042
  Copyright terms: Public domain W3C validator