MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscntz Structured version   Visualization version   GIF version

Theorem sscntz 19356
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
sscntz ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵   𝑥,𝑀,𝑦   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem sscntz
StepHypRef Expression
1 cntzfval.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . . 5 + = (+g𝑀)
3 cntzfval.z . . . . 5 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzval 19351 . . . 4 (𝑇𝐵 → (𝑍𝑇) = {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
54sseq2d 4027 . . 3 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
6 ssrab 4082 . . 3 (𝑆 ⊆ {𝑥𝐵 ∣ ∀𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
75, 6bitrdi 287 . 2 (𝑇𝐵 → (𝑆 ⊆ (𝑍𝑇) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
8 ibar 528 . . 3 (𝑆𝐵 → (∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))))
98bicomd 223 . 2 (𝑆𝐵 → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
107, 9sylan9bbr 510 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wral 3058  {crab 3432  wss 3962  cfv 6562  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  Cntzccntz 19345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-cntz 19347
This theorem is referenced by:  cntz2ss  19365  cntzrec  19366  submcmn2  19871  mplcoe5lem  22074  symgcntz  33087
  Copyright terms: Public domain W3C validator