![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscntz | Structured version Visualization version GIF version |
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
sscntz | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 19351 | . . . 4 ⊢ (𝑇 ⊆ 𝐵 → (𝑍‘𝑇) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
5 | 4 | sseq2d 4027 | . . 3 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
6 | ssrab 4082 | . . 3 ⊢ (𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | |
7 | 5, 6 | bitrdi 287 | . 2 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) |
8 | ibar 528 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) | |
9 | 8 | bicomd 223 | . 2 ⊢ (𝑆 ⊆ 𝐵 → ((𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
10 | 7, 9 | sylan9bbr 510 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∀wral 3058 {crab 3432 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 Cntzccntz 19345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-cntz 19347 |
This theorem is referenced by: cntz2ss 19365 cntzrec 19366 submcmn2 19871 mplcoe5lem 22074 symgcntz 33087 |
Copyright terms: Public domain | W3C validator |