Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscntz | Structured version Visualization version GIF version |
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
sscntz | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 18908 | . . . 4 ⊢ (𝑇 ⊆ 𝐵 → (𝑍‘𝑇) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
5 | 4 | sseq2d 3957 | . . 3 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
6 | ssrab 4010 | . . 3 ⊢ (𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | |
7 | 5, 6 | bitrdi 286 | . 2 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) |
8 | ibar 528 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) | |
9 | 8 | bicomd 222 | . 2 ⊢ (𝑆 ⊆ 𝐵 → ((𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
10 | 7, 9 | sylan9bbr 510 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∀wral 3065 {crab 3069 ⊆ wss 3891 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Cntzccntz 18902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-cntz 18904 |
This theorem is referenced by: cntz2ss 18920 cntzrec 18921 submcmn2 19421 mplcoe5lem 21221 symgcntz 31333 |
Copyright terms: Public domain | W3C validator |