![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscntz | Structured version Visualization version GIF version |
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
sscntz | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzfval.p | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | cntzfval.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
4 | 1, 2, 3 | cntzval 18111 | . . . 4 ⊢ (𝑇 ⊆ 𝐵 → (𝑍‘𝑇) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
5 | 4 | sseq2d 3858 | . . 3 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
6 | ssrab 3907 | . . 3 ⊢ (𝑆 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)} ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | |
7 | 5, 6 | syl6bb 279 | . 2 ⊢ (𝑇 ⊆ 𝐵 → (𝑆 ⊆ (𝑍‘𝑇) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) |
8 | ibar 524 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)))) | |
9 | 8 | bicomd 215 | . 2 ⊢ (𝑆 ⊆ 𝐵 → ((𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
10 | 7, 9 | sylan9bbr 506 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∀wral 3117 {crab 3121 ⊆ wss 3798 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 Cntzccntz 18105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-cntz 18107 |
This theorem is referenced by: cntz2ss 18122 cntzrec 18123 submcmn2 18604 mplcoe5lem 19835 |
Copyright terms: Public domain | W3C validator |