MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sshauslem Structured version   Visualization version   GIF version

Theorem sshauslem 23259
Description: Lemma for sshaus 23262 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
t1sep.1 𝑋 = 𝐽
sshauslem.2 (𝐽𝐴𝐽 ∈ Top)
sshauslem.3 ((𝐽𝐴 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
Assertion
Ref Expression
sshauslem ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾𝐴)

Proof of Theorem sshauslem
StepHypRef Expression
1 simp1 1136 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽𝐴)
2 f1oi 6838 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of1 6799 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋1-1𝑋)
42, 3mp1i 13 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ( I ↾ 𝑋):𝑋1-1𝑋)
5 simp3 1138 . . 3 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽𝐾)
6 simp2 1137 . . . 4 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
7 sshauslem.2 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
873ad2ant1 1133 . . . . 5 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ Top)
9 t1sep.1 . . . . . 6 𝑋 = 𝐽
109toptopon 22804 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
118, 10sylib 218 . . . 4 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
12 ssidcn 23142 . . . 4 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽𝐾))
136, 11, 12syl2anc 584 . . 3 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽𝐾))
145, 13mpbird 257 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽))
15 sshauslem.3 . 2 ((𝐽𝐴 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
161, 4, 14, 15syl3anc 1373 1 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wss 3914   cuni 4871   I cid 5532  cres 5640  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-top 22781  df-topon 22798  df-cn 23114
This theorem is referenced by:  sst0  23260  sst1  23261  sshaus  23262
  Copyright terms: Public domain W3C validator