![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sshauslem | Structured version Visualization version GIF version |
Description: Lemma for sshaus 23100 and similar theorems. If the topological property π΄ is preserved under injective preimages, then a topology finer than one with property π΄ also has property π΄. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t1sep.1 | β’ π = βͺ π½ |
sshauslem.2 | β’ (π½ β π΄ β π½ β Top) |
sshauslem.3 | β’ ((π½ β π΄ β§ ( I βΎ π):πβ1-1βπ β§ ( I βΎ π) β (πΎ Cn π½)) β πΎ β π΄) |
Ref | Expression |
---|---|
sshauslem | β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β πΎ β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β π½ β π΄) | |
2 | f1oi 6872 | . . 3 β’ ( I βΎ π):πβ1-1-ontoβπ | |
3 | f1of1 6833 | . . 3 β’ (( I βΎ π):πβ1-1-ontoβπ β ( I βΎ π):πβ1-1βπ) | |
4 | 2, 3 | mp1i 13 | . 2 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β ( I βΎ π):πβ1-1βπ) |
5 | simp3 1137 | . . 3 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β π½ β πΎ) | |
6 | simp2 1136 | . . . 4 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β πΎ β (TopOnβπ)) | |
7 | sshauslem.2 | . . . . . 6 β’ (π½ β π΄ β π½ β Top) | |
8 | 7 | 3ad2ant1 1132 | . . . . 5 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β π½ β Top) |
9 | t1sep.1 | . . . . . 6 β’ π = βͺ π½ | |
10 | 9 | toptopon 22640 | . . . . 5 β’ (π½ β Top β π½ β (TopOnβπ)) |
11 | 8, 10 | sylib 217 | . . . 4 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β π½ β (TopOnβπ)) |
12 | ssidcn 22980 | . . . 4 β’ ((πΎ β (TopOnβπ) β§ π½ β (TopOnβπ)) β (( I βΎ π) β (πΎ Cn π½) β π½ β πΎ)) | |
13 | 6, 11, 12 | syl2anc 583 | . . 3 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β (( I βΎ π) β (πΎ Cn π½) β π½ β πΎ)) |
14 | 5, 13 | mpbird 256 | . 2 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β ( I βΎ π) β (πΎ Cn π½)) |
15 | sshauslem.3 | . 2 β’ ((π½ β π΄ β§ ( I βΎ π):πβ1-1βπ β§ ( I βΎ π) β (πΎ Cn π½)) β πΎ β π΄) | |
16 | 1, 4, 14, 15 | syl3anc 1370 | 1 β’ ((π½ β π΄ β§ πΎ β (TopOnβπ) β§ π½ β πΎ) β πΎ β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1086 = wceq 1540 β wcel 2105 β wss 3949 βͺ cuni 4909 I cid 5574 βΎ cres 5679 β1-1βwf1 6541 β1-1-ontoβwf1o 6543 βcfv 6544 (class class class)co 7412 Topctop 22616 TopOnctopon 22633 Cn ccn 22949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8825 df-top 22617 df-topon 22634 df-cn 22952 |
This theorem is referenced by: sst0 23098 sst1 23099 sshaus 23100 |
Copyright terms: Public domain | W3C validator |