![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sshauslem | Structured version Visualization version GIF version |
Description: Lemma for sshaus 23112 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
sshauslem.2 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
sshauslem.3 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
Ref | Expression |
---|---|
sshauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6871 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1of1 6832 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–1-1→𝑋) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ( I ↾ 𝑋):𝑋–1-1→𝑋) |
5 | simp3 1137 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ⊆ 𝐾) | |
6 | simp2 1136 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ (TopOn‘𝑋)) | |
7 | sshauslem.2 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
8 | 7 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Top) |
9 | t1sep.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
10 | 9 | toptopon 22652 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 8, 10 | sylib 217 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | ssidcn 22992 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 ⊆ 𝐾)) | |
13 | 6, 11, 12 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 ⊆ 𝐾)) |
14 | 5, 13 | mpbird 257 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) |
15 | sshauslem.3 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
16 | 1, 4, 14, 15 | syl3anc 1370 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ∪ cuni 4908 I cid 5573 ↾ cres 5678 –1-1→wf1 6540 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 Topctop 22628 TopOnctopon 22645 Cn ccn 22961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-top 22629 df-topon 22646 df-cn 22964 |
This theorem is referenced by: sst0 23110 sst1 23111 sshaus 23112 |
Copyright terms: Public domain | W3C validator |