MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sshauslem Structured version   Visualization version   GIF version

Theorem sshauslem 21982
Description: Lemma for sshaus 21985 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
t1sep.1 𝑋 = 𝐽
sshauslem.2 (𝐽𝐴𝐽 ∈ Top)
sshauslem.3 ((𝐽𝐴 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
Assertion
Ref Expression
sshauslem ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾𝐴)

Proof of Theorem sshauslem
StepHypRef Expression
1 simp1 1132 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽𝐴)
2 f1oi 6654 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1of1 6616 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋1-1𝑋)
42, 3mp1i 13 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ( I ↾ 𝑋):𝑋1-1𝑋)
5 simp3 1134 . . 3 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽𝐾)
6 simp2 1133 . . . 4 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
7 sshauslem.2 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
873ad2ant1 1129 . . . . 5 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ Top)
9 t1sep.1 . . . . . 6 𝑋 = 𝐽
109toptopon 21527 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
118, 10sylib 220 . . . 4 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
12 ssidcn 21865 . . . 4 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽𝐾))
136, 11, 12syl2anc 586 . . 3 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽𝐾))
145, 13mpbird 259 . 2 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽))
15 sshauslem.3 . 2 ((𝐽𝐴 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾𝐴)
161, 4, 14, 15syl3anc 1367 1 ((𝐽𝐴𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wss 3938   cuni 4840   I cid 5461  cres 5559  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Topctop 21503  TopOnctopon 21520   Cn ccn 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-top 21504  df-topon 21521  df-cn 21837
This theorem is referenced by:  sst0  21983  sst1  21984  sshaus  21985
  Copyright terms: Public domain W3C validator