Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sshauslem | Structured version Visualization version GIF version |
Description: Lemma for sshaus 22434 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
sshauslem.2 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
sshauslem.3 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
Ref | Expression |
---|---|
sshauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6737 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1of1 6699 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–1-1→𝑋) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ( I ↾ 𝑋):𝑋–1-1→𝑋) |
5 | simp3 1136 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ⊆ 𝐾) | |
6 | simp2 1135 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ (TopOn‘𝑋)) | |
7 | sshauslem.2 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
8 | 7 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Top) |
9 | t1sep.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
10 | 9 | toptopon 21974 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 8, 10 | sylib 217 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | ssidcn 22314 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 ⊆ 𝐾)) | |
13 | 6, 11, 12 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 ⊆ 𝐾)) |
14 | 5, 13 | mpbird 256 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) |
15 | sshauslem.3 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
16 | 1, 4, 14, 15 | syl3anc 1369 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 I cid 5479 ↾ cres 5582 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: sst0 22432 sst1 22433 sshaus 22434 |
Copyright terms: Public domain | W3C validator |