MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sshauslem Structured version   Visualization version   GIF version

Theorem sshauslem 23097
Description: Lemma for sshaus 23100 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
t1sep.1 𝑋 = βˆͺ 𝐽
sshauslem.2 (𝐽 ∈ 𝐴 β†’ 𝐽 ∈ Top)
sshauslem.3 ((𝐽 ∈ 𝐴 ∧ ( I β†Ύ 𝑋):𝑋–1-1→𝑋 ∧ ( I β†Ύ 𝑋) ∈ (𝐾 Cn 𝐽)) β†’ 𝐾 ∈ 𝐴)
Assertion
Ref Expression
sshauslem ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐾 ∈ 𝐴)

Proof of Theorem sshauslem
StepHypRef Expression
1 simp1 1135 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐽 ∈ 𝐴)
2 f1oi 6872 . . 3 ( I β†Ύ 𝑋):𝑋–1-1-onto→𝑋
3 f1of1 6833 . . 3 (( I β†Ύ 𝑋):𝑋–1-1-onto→𝑋 β†’ ( I β†Ύ 𝑋):𝑋–1-1→𝑋)
42, 3mp1i 13 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ ( I β†Ύ 𝑋):𝑋–1-1→𝑋)
5 simp3 1137 . . 3 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐽 βŠ† 𝐾)
6 simp2 1136 . . . 4 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
7 sshauslem.2 . . . . . 6 (𝐽 ∈ 𝐴 β†’ 𝐽 ∈ Top)
873ad2ant1 1132 . . . . 5 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐽 ∈ Top)
9 t1sep.1 . . . . . 6 𝑋 = βˆͺ 𝐽
109toptopon 22640 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
118, 10sylib 217 . . . 4 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
12 ssidcn 22980 . . . 4 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (( I β†Ύ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 βŠ† 𝐾))
136, 11, 12syl2anc 583 . . 3 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (( I β†Ύ 𝑋) ∈ (𝐾 Cn 𝐽) ↔ 𝐽 βŠ† 𝐾))
145, 13mpbird 256 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ ( I β†Ύ 𝑋) ∈ (𝐾 Cn 𝐽))
15 sshauslem.3 . 2 ((𝐽 ∈ 𝐴 ∧ ( I β†Ύ 𝑋):𝑋–1-1→𝑋 ∧ ( I β†Ύ 𝑋) ∈ (𝐾 Cn 𝐽)) β†’ 𝐾 ∈ 𝐴)
161, 4, 14, 15syl3anc 1370 1 ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ 𝐾 ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   βŠ† wss 3949  βˆͺ cuni 4909   I cid 5574   β†Ύ cres 5679  β€“1-1β†’wf1 6541  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7412  Topctop 22616  TopOnctopon 22633   Cn ccn 22949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-top 22617  df-topon 22634  df-cn 22952
This theorem is referenced by:  sst0  23098  sst1  23099  sshaus  23100
  Copyright terms: Public domain W3C validator