MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngadd Structured version   Visualization version   GIF version

Theorem srngadd 19621
Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcl.i = (*𝑟𝑅)
srngcl.b 𝐵 = (Base‘𝑅)
srngadd.p + = (+g𝑅)
Assertion
Ref Expression
srngadd ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))

Proof of Theorem srngadd
StepHypRef Expression
1 eqid 2798 . . . . 5 (oppr𝑅) = (oppr𝑅)
2 eqid 2798 . . . . 5 (*rf𝑅) = (*rf𝑅)
31, 2srngrhm 19615 . . . 4 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
4 rhmghm 19473 . . . 4 ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
53, 4syl 17 . . 3 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
6 srngcl.b . . . 4 𝐵 = (Base‘𝑅)
7 srngadd.p . . . 4 + = (+g𝑅)
81, 7oppradd 19376 . . . 4 + = (+g‘(oppr𝑅))
96, 7, 8ghmlin 18355 . . 3 (((*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)) ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)))
105, 9syl3an1 1160 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)))
11 srngring 19616 . . . 4 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
126, 7ringacl 19324 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1311, 12syl3an1 1160 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
14 srngcl.i . . . 4 = (*𝑟𝑅)
156, 14, 2stafval 19612 . . 3 ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf𝑅)‘(𝑋 + 𝑌)) = ( ‘(𝑋 + 𝑌)))
1613, 15syl 17 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 + 𝑌)) = ( ‘(𝑋 + 𝑌)))
176, 14, 2stafval 19612 . . . 4 (𝑋𝐵 → ((*rf𝑅)‘𝑋) = ( 𝑋))
18173ad2ant2 1131 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑋) = ( 𝑋))
196, 14, 2stafval 19612 . . . 4 (𝑌𝐵 → ((*rf𝑅)‘𝑌) = ( 𝑌))
20193ad2ant3 1132 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑌) = ( 𝑌))
2118, 20oveq12d 7153 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (((*rf𝑅)‘𝑋) + ((*rf𝑅)‘𝑌)) = (( 𝑋) + ( 𝑌)))
2210, 16, 213eqtr3d 2841 1 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) + ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  *𝑟cstv 16559   GrpHom cghm 18347  Ringcrg 19290  opprcoppr 19368   RingHom crh 19460  *rfcstf 19607  *-Ringcsr 19608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-rnghom 19463  df-staf 19609  df-srng 19610
This theorem is referenced by:  ipdi  20329
  Copyright terms: Public domain W3C validator