| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srngadd | Structured version Visualization version GIF version | ||
| Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
| srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srngadd.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| srngadd | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
| 3 | 1, 2 | srngrhm 20764 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
| 4 | rhmghm 20405 | . . . 4 ⊢ ((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) |
| 6 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | srngadd.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 8 | 1, 7 | oppradd 20266 | . . . 4 ⊢ + = (+g‘(oppr‘𝑅)) |
| 9 | 6, 7, 8 | ghmlin 19137 | . . 3 ⊢ (((*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
| 10 | 5, 9 | syl3an1 1163 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
| 11 | srngring 20765 | . . . 4 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
| 12 | 6, 7 | ringacl 20200 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | 11, 12 | syl3an1 1163 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 14 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
| 15 | 6, 14, 2 | stafval 20761 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
| 17 | 6, 14, 2 | stafval 20761 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
| 18 | 17 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
| 19 | 6, 14, 2 | stafval 20761 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
| 20 | 19 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
| 21 | 18, 20 | oveq12d 7372 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
| 22 | 10, 16, 21 | 3eqtr3d 2776 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 *𝑟cstv 17167 GrpHom cghm 19128 Ringcrg 20155 opprcoppr 20258 RingHom crh 20391 *rfcstf 20756 *-Ringcsr 20757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-grp 18853 df-ghm 19129 df-mgp 20063 df-ur 20104 df-ring 20157 df-oppr 20259 df-rhm 20394 df-staf 20758 df-srng 20759 |
| This theorem is referenced by: ipdi 21581 |
| Copyright terms: Public domain | W3C validator |