| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srngadd | Structured version Visualization version GIF version | ||
| Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
| srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srngadd.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| srngadd | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
| 3 | 1, 2 | srngrhm 20761 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
| 4 | rhmghm 20402 | . . . 4 ⊢ ((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) |
| 6 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | srngadd.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 8 | 1, 7 | oppradd 20263 | . . . 4 ⊢ + = (+g‘(oppr‘𝑅)) |
| 9 | 6, 7, 8 | ghmlin 19134 | . . 3 ⊢ (((*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
| 10 | 5, 9 | syl3an1 1163 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
| 11 | srngring 20762 | . . . 4 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
| 12 | 6, 7 | ringacl 20197 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | 11, 12 | syl3an1 1163 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 14 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
| 15 | 6, 14, 2 | stafval 20758 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
| 17 | 6, 14, 2 | stafval 20758 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
| 18 | 17 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
| 19 | 6, 14, 2 | stafval 20758 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
| 20 | 19 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
| 21 | 18, 20 | oveq12d 7364 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
| 22 | 10, 16, 21 | 3eqtr3d 2774 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 *𝑟cstv 17163 GrpHom cghm 19125 Ringcrg 20152 opprcoppr 20255 RingHom crh 20388 *rfcstf 20753 *-Ringcsr 20754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-ghm 19126 df-mgp 20060 df-ur 20101 df-ring 20154 df-oppr 20256 df-rhm 20391 df-staf 20755 df-srng 20756 |
| This theorem is referenced by: ipdi 21578 |
| Copyright terms: Public domain | W3C validator |