Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srngadd | Structured version Visualization version GIF version |
Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
srngadd.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srngadd | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | eqid 2738 | . . . . 5 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
3 | 1, 2 | srngrhm 20121 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
4 | rhmghm 19979 | . . . 4 ⊢ ((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) |
6 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | srngadd.p | . . . 4 ⊢ + = (+g‘𝑅) | |
8 | 1, 7 | oppradd 19881 | . . . 4 ⊢ + = (+g‘(oppr‘𝑅)) |
9 | 6, 7, 8 | ghmlin 18849 | . . 3 ⊢ (((*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
10 | 5, 9 | syl3an1 1162 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌))) |
11 | srngring 20122 | . . . 4 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
12 | 6, 7 | ringacl 19827 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
13 | 11, 12 | syl3an1 1162 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
14 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
15 | 6, 14, 2 | stafval 20118 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ 𝐵 → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
16 | 13, 15 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 + 𝑌)) = ( ∗ ‘(𝑋 + 𝑌))) |
17 | 6, 14, 2 | stafval 20118 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
18 | 17 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
19 | 6, 14, 2 | stafval 20118 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
20 | 19 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
21 | 18, 20 | oveq12d 7285 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((*rf‘𝑅)‘𝑋) + ((*rf‘𝑅)‘𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
22 | 10, 16, 21 | 3eqtr3d 2786 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 +gcplusg 16972 *𝑟cstv 16974 GrpHom cghm 18841 Ringcrg 19793 opprcoppr 19871 RingHom crh 19966 *rfcstf 20113 *-Ringcsr 20114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-tpos 8029 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-plusg 16985 df-mulr 16986 df-0g 17162 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-grp 18590 df-ghm 18842 df-mgp 19731 df-ur 19748 df-ring 19795 df-oppr 19872 df-rnghom 19969 df-staf 20115 df-srng 20116 |
This theorem is referenced by: ipdi 20855 |
Copyright terms: Public domain | W3C validator |