![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srngnvl | Structured version Visualization version GIF version |
Description: The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
srngnvl | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
2 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | srngcl 20728 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) |
4 | eqid 2727 | . . . 4 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
5 | 2, 1, 4 | stafval 20721 | . . 3 ⊢ (( ∗ ‘𝑋) ∈ 𝐵 → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = ( ∗ ‘( ∗ ‘𝑋))) |
6 | 3, 5 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = ( ∗ ‘( ∗ ‘𝑋))) |
7 | 4 | srngcnv 20726 | . . . . 5 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) = ◡(*rf‘𝑅)) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → (*rf‘𝑅) = ◡(*rf‘𝑅)) |
9 | 8 | fveq1d 6893 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋))) |
10 | 2, 1, 4 | stafval 20721 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
12 | 11 | fveq2d 6895 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = ((*rf‘𝑅)‘( ∗ ‘𝑋))) |
13 | 4, 2 | srngf1o 20727 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅):𝐵–1-1-onto→𝐵) |
14 | f1ocnvfv1 7279 | . . . 4 ⊢ (((*rf‘𝑅):𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = 𝑋) | |
15 | 13, 14 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = 𝑋) |
16 | 9, 12, 15 | 3eqtr3d 2775 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = 𝑋) |
17 | 6, 16 | eqtr3d 2769 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ◡ccnv 5671 –1-1-onto→wf1o 6541 ‘cfv 6542 Basecbs 17173 *𝑟cstv 17228 *rfcstf 20716 *-Ringcsr 20717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-0g 17416 df-mhm 18733 df-ghm 19161 df-mgp 20068 df-ur 20115 df-ring 20168 df-rhm 20404 df-staf 20718 df-srng 20719 |
This theorem is referenced by: ipassr2 21572 |
Copyright terms: Public domain | W3C validator |