![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srngnvl | Structured version Visualization version GIF version |
Description: The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
srngnvl | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
2 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | srngcl 20695 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) |
4 | eqid 2726 | . . . 4 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
5 | 2, 1, 4 | stafval 20688 | . . 3 ⊢ (( ∗ ‘𝑋) ∈ 𝐵 → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = ( ∗ ‘( ∗ ‘𝑋))) |
6 | 3, 5 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = ( ∗ ‘( ∗ ‘𝑋))) |
7 | 4 | srngcnv 20693 | . . . . 5 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) = ◡(*rf‘𝑅)) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → (*rf‘𝑅) = ◡(*rf‘𝑅)) |
9 | 8 | fveq1d 6886 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋))) |
10 | 2, 1, 4 | stafval 20688 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
12 | 11 | fveq2d 6888 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = ((*rf‘𝑅)‘( ∗ ‘𝑋))) |
13 | 4, 2 | srngf1o 20694 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅):𝐵–1-1-onto→𝐵) |
14 | f1ocnvfv1 7269 | . . . 4 ⊢ (((*rf‘𝑅):𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = 𝑋) | |
15 | 13, 14 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = 𝑋) |
16 | 9, 12, 15 | 3eqtr3d 2774 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = 𝑋) |
17 | 6, 16 | eqtr3d 2768 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ◡ccnv 5668 –1-1-onto→wf1o 6535 ‘cfv 6536 Basecbs 17150 *𝑟cstv 17205 *rfcstf 20683 *-Ringcsr 20684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-mhm 18710 df-ghm 19136 df-mgp 20037 df-ur 20084 df-ring 20137 df-rhm 20371 df-staf 20685 df-srng 20686 |
This theorem is referenced by: ipassr2 21535 |
Copyright terms: Public domain | W3C validator |