| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srngnvl | Structured version Visualization version GIF version | ||
| Description: The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
| srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| srngnvl | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
| 2 | srngcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | srngcl 20774 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) |
| 4 | eqid 2733 | . . . 4 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
| 5 | 2, 1, 4 | stafval 20767 | . . 3 ⊢ (( ∗ ‘𝑋) ∈ 𝐵 → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = ( ∗ ‘( ∗ ‘𝑋))) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = ( ∗ ‘( ∗ ‘𝑋))) |
| 7 | 4 | srngcnv 20772 | . . . . 5 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) = ◡(*rf‘𝑅)) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → (*rf‘𝑅) = ◡(*rf‘𝑅)) |
| 9 | 8 | fveq1d 6833 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋))) |
| 10 | 2, 1, 4 | stafval 20767 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
| 12 | 11 | fveq2d 6835 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = ((*rf‘𝑅)‘( ∗ ‘𝑋))) |
| 13 | 4, 2 | srngf1o 20773 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅):𝐵–1-1-onto→𝐵) |
| 14 | f1ocnvfv1 7219 | . . . 4 ⊢ (((*rf‘𝑅):𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = 𝑋) | |
| 15 | 13, 14 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → (◡(*rf‘𝑅)‘((*rf‘𝑅)‘𝑋)) = 𝑋) |
| 16 | 9, 12, 15 | 3eqtr3d 2776 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ((*rf‘𝑅)‘( ∗ ‘𝑋)) = 𝑋) |
| 17 | 6, 16 | eqtr3d 2770 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ◡ccnv 5620 –1-1-onto→wf1o 6488 ‘cfv 6489 Basecbs 17130 *𝑟cstv 17173 *rfcstf 20762 *-Ringcsr 20763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-0g 17355 df-mhm 18701 df-ghm 19135 df-mgp 20069 df-ur 20110 df-ring 20163 df-rhm 20400 df-staf 20764 df-srng 20765 |
| This theorem is referenced by: ipassr2 21594 |
| Copyright terms: Public domain | W3C validator |