MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srng1 Structured version   Visualization version   GIF version

Theorem srng1 20751
Description: The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 20753.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srng1.i = (*𝑟𝑅)
srng1.t 1 = (1r𝑅)
Assertion
Ref Expression
srng1 (𝑅 ∈ *-Ring → ( 1 ) = 1 )

Proof of Theorem srng1
StepHypRef Expression
1 srngring 20744 . . 3 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
2 eqid 2725 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 srng1.t . . . 4 1 = (1r𝑅)
42, 3ringidcl 20214 . . 3 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5 srng1.i . . . 4 = (*𝑟𝑅)
6 eqid 2725 . . . 4 (*rf𝑅) = (*rf𝑅)
72, 5, 6stafval 20740 . . 3 ( 1 ∈ (Base‘𝑅) → ((*rf𝑅)‘ 1 ) = ( 1 ))
81, 4, 73syl 18 . 2 (𝑅 ∈ *-Ring → ((*rf𝑅)‘ 1 ) = ( 1 ))
9 eqid 2725 . . . 4 (oppr𝑅) = (oppr𝑅)
109, 6srngrhm 20743 . . 3 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
119, 3oppr1 20301 . . . 4 1 = (1r‘(oppr𝑅))
123, 11rhm1 20440 . . 3 ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) → ((*rf𝑅)‘ 1 ) = 1 )
1310, 12syl 17 . 2 (𝑅 ∈ *-Ring → ((*rf𝑅)‘ 1 ) = 1 )
148, 13eqtr3d 2767 1 (𝑅 ∈ *-Ring → ( 1 ) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17183  *𝑟cstv 17238  1rcur 20133  Ringcrg 20185  opprcoppr 20284   RingHom crh 20420  *rfcstf 20735  *-Ringcsr 20736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-ghm 19176  df-mgp 20087  df-ur 20134  df-ring 20187  df-oppr 20285  df-rhm 20423  df-staf 20737  df-srng 20738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator