![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srng1 | Structured version Visualization version GIF version |
Description: The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 20753.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srng1.i | ⊢ ∗ = (*𝑟‘𝑅) |
srng1.t | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
srng1 | ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srngring 20744 | . . 3 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
2 | eqid 2725 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | srng1.t | . . . 4 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 20214 | . . 3 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
5 | srng1.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
6 | eqid 2725 | . . . 4 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
7 | 2, 5, 6 | stafval 20740 | . . 3 ⊢ ( 1 ∈ (Base‘𝑅) → ((*rf‘𝑅)‘ 1 ) = ( ∗ ‘ 1 )) |
8 | 1, 4, 7 | 3syl 18 | . 2 ⊢ (𝑅 ∈ *-Ring → ((*rf‘𝑅)‘ 1 ) = ( ∗ ‘ 1 )) |
9 | eqid 2725 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | 9, 6 | srngrhm 20743 | . . 3 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
11 | 9, 3 | oppr1 20301 | . . . 4 ⊢ 1 = (1r‘(oppr‘𝑅)) |
12 | 3, 11 | rhm1 20440 | . . 3 ⊢ ((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) → ((*rf‘𝑅)‘ 1 ) = 1 ) |
13 | 10, 12 | syl 17 | . 2 ⊢ (𝑅 ∈ *-Ring → ((*rf‘𝑅)‘ 1 ) = 1 ) |
14 | 8, 13 | eqtr3d 2767 | 1 ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 *𝑟cstv 17238 1rcur 20133 Ringcrg 20185 opprcoppr 20284 RingHom crh 20420 *rfcstf 20735 *-Ringcsr 20736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-ghm 19176 df-mgp 20087 df-ur 20134 df-ring 20187 df-oppr 20285 df-rhm 20423 df-staf 20737 df-srng 20738 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |