MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issrngd Structured version   Visualization version   GIF version

Theorem issrngd 19744
Description: Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
issrngd.k (𝜑𝐾 = (Base‘𝑅))
issrngd.p (𝜑+ = (+g𝑅))
issrngd.t (𝜑· = (.r𝑅))
issrngd.c (𝜑 = (*𝑟𝑅))
issrngd.r (𝜑𝑅 ∈ Ring)
issrngd.cl ((𝜑𝑥𝐾) → ( 𝑥) ∈ 𝐾)
issrngd.dp ((𝜑𝑥𝐾𝑦𝐾) → ( ‘(𝑥 + 𝑦)) = (( 𝑥) + ( 𝑦)))
issrngd.dt ((𝜑𝑥𝐾𝑦𝐾) → ( ‘(𝑥 · 𝑦)) = (( 𝑦) · ( 𝑥)))
issrngd.id ((𝜑𝑥𝐾) → ( ‘( 𝑥)) = 𝑥)
Assertion
Ref Expression
issrngd (𝜑𝑅 ∈ *-Ring)
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   · (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem issrngd
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . 3 (1r𝑅) = (1r𝑅)
3 eqid 2738 . . . 4 (oppr𝑅) = (oppr𝑅)
43, 2oppr1 19499 . . 3 (1r𝑅) = (1r‘(oppr𝑅))
5 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
6 eqid 2738 . . 3 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
7 issrngd.r . . 3 (𝜑𝑅 ∈ Ring)
83opprring 19496 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
97, 8syl 17 . . 3 (𝜑 → (oppr𝑅) ∈ Ring)
10 id 22 . . . . . . . . 9 (𝑥 = (1r𝑅) → 𝑥 = (1r𝑅))
11 fveq2 6668 . . . . . . . . . 10 (𝑥 = (1r𝑅) → ((*𝑟𝑅)‘𝑥) = ((*𝑟𝑅)‘(1r𝑅)))
1211fveq2d 6672 . . . . . . . . 9 (𝑥 = (1r𝑅) → ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) = ((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅))))
1310, 12eqeq12d 2754 . . . . . . . 8 (𝑥 = (1r𝑅) → (𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) ↔ (1r𝑅) = ((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅)))))
14 issrngd.id . . . . . . . . . . . . 13 ((𝜑𝑥𝐾) → ( ‘( 𝑥)) = 𝑥)
1514ex 416 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐾 → ( ‘( 𝑥)) = 𝑥))
16 issrngd.k . . . . . . . . . . . . 13 (𝜑𝐾 = (Base‘𝑅))
1716eleq2d 2818 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐾𝑥 ∈ (Base‘𝑅)))
18 issrngd.c . . . . . . . . . . . . . 14 (𝜑 = (*𝑟𝑅))
1918fveq1d 6670 . . . . . . . . . . . . . 14 (𝜑 → ( 𝑥) = ((*𝑟𝑅)‘𝑥))
2018, 19fveq12d 6675 . . . . . . . . . . . . 13 (𝜑 → ( ‘( 𝑥)) = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)))
2120eqeq1d 2740 . . . . . . . . . . . 12 (𝜑 → (( ‘( 𝑥)) = 𝑥 ↔ ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) = 𝑥))
2215, 17, 213imtr3d 296 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) = 𝑥))
2322imp 410 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) = 𝑥)
2423eqcomd 2744 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)))
2524ralrimiva 3096 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)))
261, 2ringidcl 19433 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
277, 26syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
2813, 25, 27rspcdva 3526 . . . . . . 7 (𝜑 → (1r𝑅) = ((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅))))
2928oveq1d 7179 . . . . . 6 (𝜑 → ((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))) = (((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅)))(.r𝑅)((*𝑟𝑅)‘(1r𝑅))))
3011eleq1d 2817 . . . . . . . 8 (𝑥 = (1r𝑅) → (((*𝑟𝑅)‘𝑥) ∈ (Base‘𝑅) ↔ ((*𝑟𝑅)‘(1r𝑅)) ∈ (Base‘𝑅)))
31 issrngd.cl . . . . . . . . . . 11 ((𝜑𝑥𝐾) → ( 𝑥) ∈ 𝐾)
3231ex 416 . . . . . . . . . 10 (𝜑 → (𝑥𝐾 → ( 𝑥) ∈ 𝐾))
3319, 16eleq12d 2827 . . . . . . . . . 10 (𝜑 → (( 𝑥) ∈ 𝐾 ↔ ((*𝑟𝑅)‘𝑥) ∈ (Base‘𝑅)))
3432, 17, 333imtr3d 296 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((*𝑟𝑅)‘𝑥) ∈ (Base‘𝑅)))
3534ralrimiv 3095 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((*𝑟𝑅)‘𝑥) ∈ (Base‘𝑅))
3630, 35, 27rspcdva 3526 . . . . . . 7 (𝜑 → ((*𝑟𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
37 issrngd.dt . . . . . . . . . 10 ((𝜑𝑥𝐾𝑦𝐾) → ( ‘(𝑥 · 𝑦)) = (( 𝑦) · ( 𝑥)))
38373expib 1123 . . . . . . . . 9 (𝜑 → ((𝑥𝐾𝑦𝐾) → ( ‘(𝑥 · 𝑦)) = (( 𝑦) · ( 𝑥))))
3916eleq2d 2818 . . . . . . . . . 10 (𝜑 → (𝑦𝐾𝑦 ∈ (Base‘𝑅)))
4017, 39anbi12d 634 . . . . . . . . 9 (𝜑 → ((𝑥𝐾𝑦𝐾) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
41 issrngd.t . . . . . . . . . . . 12 (𝜑· = (.r𝑅))
4241oveqd 7181 . . . . . . . . . . 11 (𝜑 → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
4318, 42fveq12d 6675 . . . . . . . . . 10 (𝜑 → ( ‘(𝑥 · 𝑦)) = ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)))
4418fveq1d 6670 . . . . . . . . . . 11 (𝜑 → ( 𝑦) = ((*𝑟𝑅)‘𝑦))
4541, 44, 19oveq123d 7185 . . . . . . . . . 10 (𝜑 → (( 𝑦) · ( 𝑥)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥)))
4643, 45eqeq12d 2754 . . . . . . . . 9 (𝜑 → (( ‘(𝑥 · 𝑦)) = (( 𝑦) · ( 𝑥)) ↔ ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥))))
4738, 40, 463imtr3d 296 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥))))
4847ralrimivv 3102 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥)))
49 fvoveq1 7187 . . . . . . . . 9 (𝑥 = (1r𝑅) → ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)𝑦)))
5011oveq2d 7180 . . . . . . . . 9 (𝑥 = (1r𝑅) → (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))))
5149, 50eqeq12d 2754 . . . . . . . 8 (𝑥 = (1r𝑅) → (((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥)) ↔ ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))))
52 oveq2 7172 . . . . . . . . . 10 (𝑦 = ((*𝑟𝑅)‘(1r𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = ((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))))
5352fveq2d 6672 . . . . . . . . 9 (𝑦 = ((*𝑟𝑅)‘(1r𝑅)) → ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)𝑦)) = ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))))
54 fveq2 6668 . . . . . . . . . 10 (𝑦 = ((*𝑟𝑅)‘(1r𝑅)) → ((*𝑟𝑅)‘𝑦) = ((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅))))
5554oveq1d 7179 . . . . . . . . 9 (𝑦 = ((*𝑟𝑅)‘(1r𝑅)) → (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))) = (((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅)))(.r𝑅)((*𝑟𝑅)‘(1r𝑅))))
5653, 55eqeq12d 2754 . . . . . . . 8 (𝑦 = ((*𝑟𝑅)‘(1r𝑅)) → (((*𝑟𝑅)‘((1r𝑅)(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))) ↔ ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))) = (((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅)))(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))))
5751, 56rspc2va 3535 . . . . . . 7 ((((1r𝑅) ∈ (Base‘𝑅) ∧ ((*𝑟𝑅)‘(1r𝑅)) ∈ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥))) → ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))) = (((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅)))(.r𝑅)((*𝑟𝑅)‘(1r𝑅))))
5827, 36, 48, 57syl21anc 837 . . . . . 6 (𝜑 → ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))) = (((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅)))(.r𝑅)((*𝑟𝑅)‘(1r𝑅))))
5929, 58eqtr4d 2776 . . . . 5 (𝜑 → ((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))) = ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))))
601, 5, 2ringlidm 19436 . . . . . 6 ((𝑅 ∈ Ring ∧ ((*𝑟𝑅)‘(1r𝑅)) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))) = ((*𝑟𝑅)‘(1r𝑅)))
617, 36, 60syl2anc 587 . . . . 5 (𝜑 → ((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅))) = ((*𝑟𝑅)‘(1r𝑅)))
6261fveq2d 6672 . . . . 5 (𝜑 → ((*𝑟𝑅)‘((1r𝑅)(.r𝑅)((*𝑟𝑅)‘(1r𝑅)))) = ((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅))))
6359, 61, 623eqtr3d 2781 . . . 4 (𝜑 → ((*𝑟𝑅)‘(1r𝑅)) = ((*𝑟𝑅)‘((*𝑟𝑅)‘(1r𝑅))))
64 eqid 2738 . . . . . 6 (*𝑟𝑅) = (*𝑟𝑅)
65 eqid 2738 . . . . . 6 (*rf𝑅) = (*rf𝑅)
661, 64, 65stafval 19731 . . . . 5 ((1r𝑅) ∈ (Base‘𝑅) → ((*rf𝑅)‘(1r𝑅)) = ((*𝑟𝑅)‘(1r𝑅)))
6727, 66syl 17 . . . 4 (𝜑 → ((*rf𝑅)‘(1r𝑅)) = ((*𝑟𝑅)‘(1r𝑅)))
6863, 67, 283eqtr4d 2783 . . 3 (𝜑 → ((*rf𝑅)‘(1r𝑅)) = (1r𝑅))
6947imp 410 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥)))
701, 5, 3, 6opprmul 19491 . . . . 5 (((*𝑟𝑅)‘𝑥)(.r‘(oppr𝑅))((*𝑟𝑅)‘𝑦)) = (((*𝑟𝑅)‘𝑦)(.r𝑅)((*𝑟𝑅)‘𝑥))
7169, 70eqtr4di 2791 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*𝑟𝑅)‘𝑥)(.r‘(oppr𝑅))((*𝑟𝑅)‘𝑦)))
721, 5ringcl 19426 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
73723expb 1121 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
747, 73sylan 583 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
751, 64, 65stafval 19731 . . . . 5 ((𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅) → ((*rf𝑅)‘(𝑥(.r𝑅)𝑦)) = ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)))
7674, 75syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*rf𝑅)‘(𝑥(.r𝑅)𝑦)) = ((*𝑟𝑅)‘(𝑥(.r𝑅)𝑦)))
771, 64, 65stafval 19731 . . . . . 6 (𝑥 ∈ (Base‘𝑅) → ((*rf𝑅)‘𝑥) = ((*𝑟𝑅)‘𝑥))
781, 64, 65stafval 19731 . . . . . 6 (𝑦 ∈ (Base‘𝑅) → ((*rf𝑅)‘𝑦) = ((*𝑟𝑅)‘𝑦))
7977, 78oveqan12d 7183 . . . . 5 ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((*rf𝑅)‘𝑥)(.r‘(oppr𝑅))((*rf𝑅)‘𝑦)) = (((*𝑟𝑅)‘𝑥)(.r‘(oppr𝑅))((*𝑟𝑅)‘𝑦)))
8079adantl 485 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (((*rf𝑅)‘𝑥)(.r‘(oppr𝑅))((*rf𝑅)‘𝑦)) = (((*𝑟𝑅)‘𝑥)(.r‘(oppr𝑅))((*𝑟𝑅)‘𝑦)))
8171, 76, 803eqtr4d 2783 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*rf𝑅)‘(𝑥(.r𝑅)𝑦)) = (((*rf𝑅)‘𝑥)(.r‘(oppr𝑅))((*rf𝑅)‘𝑦)))
823, 1opprbas 19494 . . 3 (Base‘𝑅) = (Base‘(oppr𝑅))
83 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
843, 83oppradd 19495 . . 3 (+g𝑅) = (+g‘(oppr𝑅))
8534imp 410 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((*𝑟𝑅)‘𝑥) ∈ (Base‘𝑅))
861, 64, 65staffval 19730 . . . 4 (*rf𝑅) = (𝑥 ∈ (Base‘𝑅) ↦ ((*𝑟𝑅)‘𝑥))
8785, 86fmptd 6882 . . 3 (𝜑 → (*rf𝑅):(Base‘𝑅)⟶(Base‘𝑅))
88 issrngd.dp . . . . . . 7 ((𝜑𝑥𝐾𝑦𝐾) → ( ‘(𝑥 + 𝑦)) = (( 𝑥) + ( 𝑦)))
89883expib 1123 . . . . . 6 (𝜑 → ((𝑥𝐾𝑦𝐾) → ( ‘(𝑥 + 𝑦)) = (( 𝑥) + ( 𝑦))))
90 issrngd.p . . . . . . . . 9 (𝜑+ = (+g𝑅))
9190oveqd 7181 . . . . . . . 8 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
9218, 91fveq12d 6675 . . . . . . 7 (𝜑 → ( ‘(𝑥 + 𝑦)) = ((*𝑟𝑅)‘(𝑥(+g𝑅)𝑦)))
9390, 19, 44oveq123d 7185 . . . . . . 7 (𝜑 → (( 𝑥) + ( 𝑦)) = (((*𝑟𝑅)‘𝑥)(+g𝑅)((*𝑟𝑅)‘𝑦)))
9492, 93eqeq12d 2754 . . . . . 6 (𝜑 → (( ‘(𝑥 + 𝑦)) = (( 𝑥) + ( 𝑦)) ↔ ((*𝑟𝑅)‘(𝑥(+g𝑅)𝑦)) = (((*𝑟𝑅)‘𝑥)(+g𝑅)((*𝑟𝑅)‘𝑦))))
9589, 40, 943imtr3d 296 . . . . 5 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((*𝑟𝑅)‘(𝑥(+g𝑅)𝑦)) = (((*𝑟𝑅)‘𝑥)(+g𝑅)((*𝑟𝑅)‘𝑦))))
9695imp 410 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*𝑟𝑅)‘(𝑥(+g𝑅)𝑦)) = (((*𝑟𝑅)‘𝑥)(+g𝑅)((*𝑟𝑅)‘𝑦)))
971, 83ringacl 19443 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
98973expb 1121 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
997, 98sylan 583 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
1001, 64, 65stafval 19731 . . . . 5 ((𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅) → ((*rf𝑅)‘(𝑥(+g𝑅)𝑦)) = ((*𝑟𝑅)‘(𝑥(+g𝑅)𝑦)))
10199, 100syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*rf𝑅)‘(𝑥(+g𝑅)𝑦)) = ((*𝑟𝑅)‘(𝑥(+g𝑅)𝑦)))
10277, 78oveqan12d 7183 . . . . 5 ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (((*rf𝑅)‘𝑥)(+g𝑅)((*rf𝑅)‘𝑦)) = (((*𝑟𝑅)‘𝑥)(+g𝑅)((*𝑟𝑅)‘𝑦)))
103102adantl 485 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (((*rf𝑅)‘𝑥)(+g𝑅)((*rf𝑅)‘𝑦)) = (((*𝑟𝑅)‘𝑥)(+g𝑅)((*𝑟𝑅)‘𝑦)))
10496, 101, 1033eqtr4d 2783 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((*rf𝑅)‘(𝑥(+g𝑅)𝑦)) = (((*rf𝑅)‘𝑥)(+g𝑅)((*rf𝑅)‘𝑦)))
1051, 2, 4, 5, 6, 7, 9, 68, 81, 82, 83, 84, 87, 104isrhmd 19596 . 2 (𝜑 → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
1061, 64, 65staffval 19730 . . 3 (*rf𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((*𝑟𝑅)‘𝑦))
107106fmpt 6878 . . . . . . 7 (∀𝑦 ∈ (Base‘𝑅)((*𝑟𝑅)‘𝑦) ∈ (Base‘𝑅) ↔ (*rf𝑅):(Base‘𝑅)⟶(Base‘𝑅))
10887, 107sylibr 237 . . . . . 6 (𝜑 → ∀𝑦 ∈ (Base‘𝑅)((*𝑟𝑅)‘𝑦) ∈ (Base‘𝑅))
109108r19.21bi 3120 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑅)) → ((*𝑟𝑅)‘𝑦) ∈ (Base‘𝑅))
110 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
111 fveq2 6668 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((*𝑟𝑅)‘𝑥) = ((*𝑟𝑅)‘𝑦))
112111fveq2d 6672 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦)))
113110, 112eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) ↔ 𝑦 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦))))
114113rspccva 3523 . . . . . . . . 9 ((∀𝑥 ∈ (Base‘𝑅)𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦)))
11525, 114sylan 583 . . . . . . . 8 ((𝜑𝑦 ∈ (Base‘𝑅)) → 𝑦 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦)))
116115adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦)))
117 fveq2 6668 . . . . . . . 8 (𝑥 = ((*𝑟𝑅)‘𝑦) → ((*𝑟𝑅)‘𝑥) = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦)))
118117eqeq2d 2749 . . . . . . 7 (𝑥 = ((*𝑟𝑅)‘𝑦) → (𝑦 = ((*𝑟𝑅)‘𝑥) ↔ 𝑦 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑦))))
119116, 118syl5ibrcom 250 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 = ((*𝑟𝑅)‘𝑦) → 𝑦 = ((*𝑟𝑅)‘𝑥)))
12024adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)))
121 fveq2 6668 . . . . . . . 8 (𝑦 = ((*𝑟𝑅)‘𝑥) → ((*𝑟𝑅)‘𝑦) = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥)))
122121eqeq2d 2749 . . . . . . 7 (𝑦 = ((*𝑟𝑅)‘𝑥) → (𝑥 = ((*𝑟𝑅)‘𝑦) ↔ 𝑥 = ((*𝑟𝑅)‘((*𝑟𝑅)‘𝑥))))
123120, 122syl5ibrcom 250 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦 = ((*𝑟𝑅)‘𝑥) → 𝑥 = ((*𝑟𝑅)‘𝑦)))
124119, 123impbid 215 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 = ((*𝑟𝑅)‘𝑦) ↔ 𝑦 = ((*𝑟𝑅)‘𝑥)))
12586, 85, 109, 124f1ocnv2d 7408 . . . 4 (𝜑 → ((*rf𝑅):(Base‘𝑅)–1-1-onto→(Base‘𝑅) ∧ (*rf𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((*𝑟𝑅)‘𝑦))))
126125simprd 499 . . 3 (𝜑(*rf𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((*𝑟𝑅)‘𝑦)))
127106, 126eqtr4id 2792 . 2 (𝜑 → (*rf𝑅) = (*rf𝑅))
1283, 65issrng 19733 . 2 (𝑅 ∈ *-Ring ↔ ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) ∧ (*rf𝑅) = (*rf𝑅)))
129105, 127, 128sylanbrc 586 1 (𝜑𝑅 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  cmpt 5107  ccnv 5518  wf 6329  1-1-ontowf1o 6332  cfv 6333  (class class class)co 7164  Basecbs 16579  +gcplusg 16661  .rcmulr 16662  *𝑟cstv 16663  1rcur 19363  Ringcrg 19409  opprcoppr 19487   RingHom crh 19579  *rfcstf 19726  *-Ringcsr 19727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-tpos 7914  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-plusg 16674  df-mulr 16675  df-0g 16811  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-mhm 18065  df-grp 18215  df-ghm 18467  df-mgp 19352  df-ur 19364  df-ring 19411  df-oppr 19488  df-rnghom 19582  df-staf 19728  df-srng 19729
This theorem is referenced by:  idsrngd  19745  cnsrng  20244  hlhilsrnglem  39579
  Copyright terms: Public domain W3C validator