Proof of Theorem issrngd
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 2 | | eqid 2737 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 3 | | eqid 2737 |
. . . 4
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 4 | 3, 2 | oppr1 20350 |
. . 3
⊢
(1r‘𝑅) =
(1r‘(oppr‘𝑅)) |
| 5 | | eqid 2737 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 6 | | eqid 2737 |
. . 3
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 7 | | issrngd.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | 3 | opprring 20347 |
. . . 4
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 →
(oppr‘𝑅) ∈ Ring) |
| 10 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = (1r‘𝑅) → 𝑥 = (1r‘𝑅)) |
| 11 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = (1r‘𝑅) →
((*𝑟‘𝑅)‘𝑥) = ((*𝑟‘𝑅)‘(1r‘𝑅))) |
| 12 | 11 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑥 = (1r‘𝑅) →
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 13 | 10, 12 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = (1r‘𝑅) → (𝑥 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) ↔ (1r‘𝑅) =
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅))))) |
| 14 | | issrngd.id |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘( ∗
‘𝑥)) = 𝑥) |
| 15 | 14 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐾 → ( ∗ ‘( ∗
‘𝑥)) = 𝑥)) |
| 16 | | issrngd.k |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 = (Base‘𝑅)) |
| 17 | 16 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 18 | | issrngd.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
| 19 | 18 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ( ∗ ‘𝑥) =
((*𝑟‘𝑅)‘𝑥)) |
| 20 | 18, 19 | fveq12d 6913 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( ∗ ‘( ∗
‘𝑥)) =
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥))) |
| 21 | 20 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝜑 → (( ∗ ‘( ∗
‘𝑥)) = 𝑥 ↔
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) = 𝑥)) |
| 22 | 15, 17, 21 | 3imtr3d 293 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) = 𝑥)) |
| 23 | 22 | imp 406 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) →
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) = 𝑥) |
| 24 | 23 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥))) |
| 25 | 24 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)𝑥 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥))) |
| 26 | 1, 2 | ringidcl 20262 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 27 | 7, 26 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 28 | 13, 25, 27 | rspcdva 3623 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) =
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 29 | 28 | oveq1d 7446 |
. . . . . 6
⊢ (𝜑 →
((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))) =
(((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 30 | 11 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑥 = (1r‘𝑅) →
(((*𝑟‘𝑅)‘𝑥) ∈ (Base‘𝑅) ↔ ((*𝑟‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅))) |
| 31 | | issrngd.cl |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘𝑥) ∈ 𝐾) |
| 32 | 31 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐾 → ( ∗ ‘𝑥) ∈ 𝐾)) |
| 33 | 19, 16 | eleq12d 2835 |
. . . . . . . . . 10
⊢ (𝜑 → (( ∗ ‘𝑥) ∈ 𝐾 ↔ ((*𝑟‘𝑅)‘𝑥) ∈ (Base‘𝑅))) |
| 34 | 32, 17, 33 | 3imtr3d 293 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((*𝑟‘𝑅)‘𝑥) ∈ (Base‘𝑅))) |
| 35 | 34 | ralrimiv 3145 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)((*𝑟‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 36 | 30, 35, 27 | rspcdva 3623 |
. . . . . . 7
⊢ (𝜑 →
((*𝑟‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
| 37 | | issrngd.dt |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗
‘𝑥))) |
| 38 | 37 | 3expib 1123 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗
‘𝑥)))) |
| 39 | 16 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐾 ↔ 𝑦 ∈ (Base‘𝑅))) |
| 40 | 17, 39 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) |
| 41 | | issrngd.t |
. . . . . . . . . . . 12
⊢ (𝜑 → · =
(.r‘𝑅)) |
| 42 | 41 | oveqd 7448 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 · 𝑦) = (𝑥(.r‘𝑅)𝑦)) |
| 43 | 18, 42 | fveq12d 6913 |
. . . . . . . . . 10
⊢ (𝜑 → ( ∗ ‘(𝑥 · 𝑦)) = ((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦))) |
| 44 | 18 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝜑 → ( ∗ ‘𝑦) =
((*𝑟‘𝑅)‘𝑦)) |
| 45 | 41, 44, 19 | oveq123d 7452 |
. . . . . . . . . 10
⊢ (𝜑 → (( ∗ ‘𝑦) · ( ∗
‘𝑥)) =
(((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥))) |
| 46 | 43, 45 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (𝜑 → (( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗
‘𝑥)) ↔
((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥)))) |
| 47 | 38, 40, 46 | 3imtr3d 293 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) →
((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥)))) |
| 48 | 47 | ralrimivv 3200 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥))) |
| 49 | | fvoveq1 7454 |
. . . . . . . . 9
⊢ (𝑥 = (1r‘𝑅) →
((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = ((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)𝑦))) |
| 50 | 11 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑥 = (1r‘𝑅) →
(((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 51 | 49, 50 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = (1r‘𝑅) →
(((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥)) ↔ ((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))))) |
| 52 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑦 =
((*𝑟‘𝑅)‘(1r‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑦) = ((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 53 | 52 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑦 =
((*𝑟‘𝑅)‘(1r‘𝑅)) →
((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)𝑦)) = ((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))))) |
| 54 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑦 =
((*𝑟‘𝑅)‘(1r‘𝑅)) →
((*𝑟‘𝑅)‘𝑦) = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 55 | 54 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑦 =
((*𝑟‘𝑅)‘(1r‘𝑅)) →
(((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))) =
(((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 56 | 53, 55 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑦 =
((*𝑟‘𝑅)‘(1r‘𝑅)) →
(((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))) ↔
((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) =
(((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))))) |
| 57 | 51, 56 | rspc2va 3634 |
. . . . . . 7
⊢
((((1r‘𝑅) ∈ (Base‘𝑅) ∧ ((*𝑟‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥))) →
((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) =
(((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 58 | 27, 36, 48, 57 | syl21anc 838 |
. . . . . 6
⊢ (𝜑 →
((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) =
(((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 59 | 29, 58 | eqtr4d 2780 |
. . . . 5
⊢ (𝜑 →
((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))) =
((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))))) |
| 60 | 1, 5, 2 | ringlidm 20266 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((*𝑟‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))) =
((*𝑟‘𝑅)‘(1r‘𝑅))) |
| 61 | 7, 36, 60 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅))) =
((*𝑟‘𝑅)‘(1r‘𝑅))) |
| 62 | 61 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 →
((*𝑟‘𝑅)‘((1r‘𝑅)(.r‘𝑅)((*𝑟‘𝑅)‘(1r‘𝑅)))) =
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 63 | 59, 61, 62 | 3eqtr3d 2785 |
. . . 4
⊢ (𝜑 →
((*𝑟‘𝑅)‘(1r‘𝑅)) =
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘(1r‘𝑅)))) |
| 64 | | eqid 2737 |
. . . . . 6
⊢
(*𝑟‘𝑅) = (*𝑟‘𝑅) |
| 65 | | eqid 2737 |
. . . . . 6
⊢
(*rf‘𝑅) = (*rf‘𝑅) |
| 66 | 1, 64, 65 | stafval 20843 |
. . . . 5
⊢
((1r‘𝑅) ∈ (Base‘𝑅) → ((*rf‘𝑅)‘(1r‘𝑅)) =
((*𝑟‘𝑅)‘(1r‘𝑅))) |
| 67 | 27, 66 | syl 17 |
. . . 4
⊢ (𝜑 →
((*rf‘𝑅)‘(1r‘𝑅)) =
((*𝑟‘𝑅)‘(1r‘𝑅))) |
| 68 | 63, 67, 28 | 3eqtr4d 2787 |
. . 3
⊢ (𝜑 →
((*rf‘𝑅)‘(1r‘𝑅)) = (1r‘𝑅)) |
| 69 | 47 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥))) |
| 70 | 1, 5, 3, 6 | opprmul 20337 |
. . . . 5
⊢
(((*𝑟‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*𝑟‘𝑅)‘𝑦)) = (((*𝑟‘𝑅)‘𝑦)(.r‘𝑅)((*𝑟‘𝑅)‘𝑥)) |
| 71 | 69, 70 | eqtr4di 2795 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*𝑟‘𝑅)‘𝑦))) |
| 72 | 1, 5 | ringcl 20247 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 73 | 72 | 3expb 1121 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 74 | 7, 73 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 75 | 1, 64, 65 | stafval 20843 |
. . . . 5
⊢ ((𝑥(.r‘𝑅)𝑦) ∈ (Base‘𝑅) → ((*rf‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = ((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦))) |
| 76 | 74, 75 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*rf‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = ((*𝑟‘𝑅)‘(𝑥(.r‘𝑅)𝑦))) |
| 77 | 1, 64, 65 | stafval 20843 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝑅) →
((*rf‘𝑅)‘𝑥) = ((*𝑟‘𝑅)‘𝑥)) |
| 78 | 1, 64, 65 | stafval 20843 |
. . . . . 6
⊢ (𝑦 ∈ (Base‘𝑅) →
((*rf‘𝑅)‘𝑦) = ((*𝑟‘𝑅)‘𝑦)) |
| 79 | 77, 78 | oveqan12d 7450 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) →
(((*rf‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*rf‘𝑅)‘𝑦)) = (((*𝑟‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*𝑟‘𝑅)‘𝑦))) |
| 80 | 79 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
(((*rf‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*rf‘𝑅)‘𝑦)) = (((*𝑟‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*𝑟‘𝑅)‘𝑦))) |
| 81 | 71, 76, 80 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*rf‘𝑅)‘(𝑥(.r‘𝑅)𝑦)) = (((*rf‘𝑅)‘𝑥)(.r‘(oppr‘𝑅))((*rf‘𝑅)‘𝑦))) |
| 82 | 3, 1 | opprbas 20341 |
. . 3
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) |
| 83 | | eqid 2737 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 84 | 3, 83 | oppradd 20343 |
. . 3
⊢
(+g‘𝑅) =
(+g‘(oppr‘𝑅)) |
| 85 | 34 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) →
((*𝑟‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 86 | 1, 64, 65 | staffval 20842 |
. . . 4
⊢
(*rf‘𝑅) = (𝑥 ∈ (Base‘𝑅) ↦
((*𝑟‘𝑅)‘𝑥)) |
| 87 | 85, 86 | fmptd 7134 |
. . 3
⊢ (𝜑 →
(*rf‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
| 88 | | issrngd.dp |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦))) |
| 89 | 88 | 3expib 1123 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦)))) |
| 90 | | issrngd.p |
. . . . . . . . 9
⊢ (𝜑 → + =
(+g‘𝑅)) |
| 91 | 90 | oveqd 7448 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝑅)𝑦)) |
| 92 | 18, 91 | fveq12d 6913 |
. . . . . . 7
⊢ (𝜑 → ( ∗ ‘(𝑥 + 𝑦)) = ((*𝑟‘𝑅)‘(𝑥(+g‘𝑅)𝑦))) |
| 93 | 90, 19, 44 | oveq123d 7452 |
. . . . . . 7
⊢ (𝜑 → (( ∗ ‘𝑥) + ( ∗ ‘𝑦)) =
(((*𝑟‘𝑅)‘𝑥)(+g‘𝑅)((*𝑟‘𝑅)‘𝑦))) |
| 94 | 92, 93 | eqeq12d 2753 |
. . . . . 6
⊢ (𝜑 → (( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦)) ↔
((*𝑟‘𝑅)‘(𝑥(+g‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑥)(+g‘𝑅)((*𝑟‘𝑅)‘𝑦)))) |
| 95 | 89, 40, 94 | 3imtr3d 293 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) →
((*𝑟‘𝑅)‘(𝑥(+g‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑥)(+g‘𝑅)((*𝑟‘𝑅)‘𝑦)))) |
| 96 | 95 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*𝑟‘𝑅)‘(𝑥(+g‘𝑅)𝑦)) = (((*𝑟‘𝑅)‘𝑥)(+g‘𝑅)((*𝑟‘𝑅)‘𝑦))) |
| 97 | 1, 83 | ringacl 20275 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 98 | 97 | 3expb 1121 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 99 | 7, 98 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 100 | 1, 64, 65 | stafval 20843 |
. . . . 5
⊢ ((𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅) → ((*rf‘𝑅)‘(𝑥(+g‘𝑅)𝑦)) = ((*𝑟‘𝑅)‘(𝑥(+g‘𝑅)𝑦))) |
| 101 | 99, 100 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*rf‘𝑅)‘(𝑥(+g‘𝑅)𝑦)) = ((*𝑟‘𝑅)‘(𝑥(+g‘𝑅)𝑦))) |
| 102 | 77, 78 | oveqan12d 7450 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) →
(((*rf‘𝑅)‘𝑥)(+g‘𝑅)((*rf‘𝑅)‘𝑦)) = (((*𝑟‘𝑅)‘𝑥)(+g‘𝑅)((*𝑟‘𝑅)‘𝑦))) |
| 103 | 102 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
(((*rf‘𝑅)‘𝑥)(+g‘𝑅)((*rf‘𝑅)‘𝑦)) = (((*𝑟‘𝑅)‘𝑥)(+g‘𝑅)((*𝑟‘𝑅)‘𝑦))) |
| 104 | 96, 101, 103 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) →
((*rf‘𝑅)‘(𝑥(+g‘𝑅)𝑦)) = (((*rf‘𝑅)‘𝑥)(+g‘𝑅)((*rf‘𝑅)‘𝑦))) |
| 105 | 1, 2, 4, 5, 6, 7, 9, 68, 81, 82, 83, 84, 87, 104 | isrhmd 20488 |
. 2
⊢ (𝜑 →
(*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
| 106 | 1, 64, 65 | staffval 20842 |
. . 3
⊢
(*rf‘𝑅) = (𝑦 ∈ (Base‘𝑅) ↦
((*𝑟‘𝑅)‘𝑦)) |
| 107 | 106 | fmpt 7130 |
. . . . . . 7
⊢
(∀𝑦 ∈
(Base‘𝑅)((*𝑟‘𝑅)‘𝑦) ∈ (Base‘𝑅) ↔ (*rf‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
| 108 | 87, 107 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑅)((*𝑟‘𝑅)‘𝑦) ∈ (Base‘𝑅)) |
| 109 | 108 | r19.21bi 3251 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) →
((*𝑟‘𝑅)‘𝑦) ∈ (Base‘𝑅)) |
| 110 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 111 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((*𝑟‘𝑅)‘𝑥) = ((*𝑟‘𝑅)‘𝑦)) |
| 112 | 111 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦))) |
| 113 | 110, 112 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) ↔ 𝑦 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦)))) |
| 114 | 113 | rspccva 3621 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
(Base‘𝑅)𝑥 =
((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦))) |
| 115 | 25, 114 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦))) |
| 116 | 115 | adantrl 716 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦))) |
| 117 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 =
((*𝑟‘𝑅)‘𝑦) → ((*𝑟‘𝑅)‘𝑥) = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦))) |
| 118 | 117 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑥 =
((*𝑟‘𝑅)‘𝑦) → (𝑦 = ((*𝑟‘𝑅)‘𝑥) ↔ 𝑦 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑦)))) |
| 119 | 116, 118 | syl5ibrcom 247 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 = ((*𝑟‘𝑅)‘𝑦) → 𝑦 = ((*𝑟‘𝑅)‘𝑥))) |
| 120 | 24 | adantrr 717 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥))) |
| 121 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 =
((*𝑟‘𝑅)‘𝑥) → ((*𝑟‘𝑅)‘𝑦) = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥))) |
| 122 | 121 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑦 =
((*𝑟‘𝑅)‘𝑥) → (𝑥 = ((*𝑟‘𝑅)‘𝑦) ↔ 𝑥 = ((*𝑟‘𝑅)‘((*𝑟‘𝑅)‘𝑥)))) |
| 123 | 120, 122 | syl5ibrcom 247 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦 = ((*𝑟‘𝑅)‘𝑥) → 𝑥 = ((*𝑟‘𝑅)‘𝑦))) |
| 124 | 119, 123 | impbid 212 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 = ((*𝑟‘𝑅)‘𝑦) ↔ 𝑦 = ((*𝑟‘𝑅)‘𝑥))) |
| 125 | 86, 85, 109, 124 | f1ocnv2d 7686 |
. . . 4
⊢ (𝜑 →
((*rf‘𝑅):(Base‘𝑅)–1-1-onto→(Base‘𝑅) ∧ ◡(*rf‘𝑅) = (𝑦 ∈ (Base‘𝑅) ↦
((*𝑟‘𝑅)‘𝑦)))) |
| 126 | 125 | simprd 495 |
. . 3
⊢ (𝜑 → ◡(*rf‘𝑅) = (𝑦 ∈ (Base‘𝑅) ↦
((*𝑟‘𝑅)‘𝑦))) |
| 127 | 106, 126 | eqtr4id 2796 |
. 2
⊢ (𝜑 →
(*rf‘𝑅) = ◡(*rf‘𝑅)) |
| 128 | 3, 65 | issrng 20845 |
. 2
⊢ (𝑅 ∈ *-Ring ↔
((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) ∧
(*rf‘𝑅) = ◡(*rf‘𝑅))) |
| 129 | 105, 127,
128 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑅 ∈ *-Ring) |