MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srng0 Structured version   Visualization version   GIF version

Theorem srng0 20611
Description: The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
srng0.i = (*𝑟𝑅)
srng0.z 0 = (0g𝑅)
Assertion
Ref Expression
srng0 (𝑅 ∈ *-Ring → ( 0 ) = 0 )

Proof of Theorem srng0
StepHypRef Expression
1 srngring 20603 . . 3 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
2 ringgrp 20132 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3 eqid 2732 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4 srng0.z . . . 4 0 = (0g𝑅)
53, 4grpidcl 18886 . . 3 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
6 srng0.i . . . 4 = (*𝑟𝑅)
7 eqid 2732 . . . 4 (*rf𝑅) = (*rf𝑅)
83, 6, 7stafval 20599 . . 3 ( 0 ∈ (Base‘𝑅) → ((*rf𝑅)‘ 0 ) = ( 0 ))
91, 2, 5, 84syl 19 . 2 (𝑅 ∈ *-Ring → ((*rf𝑅)‘ 0 ) = ( 0 ))
10 eqid 2732 . . . 4 (oppr𝑅) = (oppr𝑅)
1110, 7srngrhm 20602 . . 3 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
12 rhmghm 20375 . . 3 ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
1310, 4oppr0 20240 . . . 4 0 = (0g‘(oppr𝑅))
144, 13ghmid 19136 . . 3 ((*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)) → ((*rf𝑅)‘ 0 ) = 0 )
1511, 12, 143syl 18 . 2 (𝑅 ∈ *-Ring → ((*rf𝑅)‘ 0 ) = 0 )
169, 15eqtr3d 2774 1 (𝑅 ∈ *-Ring → ( 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7411  Basecbs 17148  *𝑟cstv 17203  0gc0g 17389  Grpcgrp 18855   GrpHom cghm 19127  Ringcrg 20127  opprcoppr 20224   RingHom crh 20360  *rfcstf 20594  *-Ringcsr 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-mulr 17215  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-grp 18858  df-ghm 19128  df-mgp 20029  df-ur 20076  df-ring 20129  df-oppr 20225  df-rhm 20363  df-staf 20596  df-srng 20597
This theorem is referenced by:  iporthcom  21407  ip0r  21409
  Copyright terms: Public domain W3C validator