MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srng0 Structured version   Visualization version   GIF version

Theorem srng0 19215
Description: The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
srng0.i = (*𝑟𝑅)
srng0.z 0 = (0g𝑅)
Assertion
Ref Expression
srng0 (𝑅 ∈ *-Ring → ( 0 ) = 0 )

Proof of Theorem srng0
StepHypRef Expression
1 srngring 19207 . . 3 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
2 ringgrp 18905 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3 eqid 2824 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4 srng0.z . . . 4 0 = (0g𝑅)
53, 4grpidcl 17803 . . 3 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
6 srng0.i . . . 4 = (*𝑟𝑅)
7 eqid 2824 . . . 4 (*rf𝑅) = (*rf𝑅)
83, 6, 7stafval 19203 . . 3 ( 0 ∈ (Base‘𝑅) → ((*rf𝑅)‘ 0 ) = ( 0 ))
91, 2, 5, 84syl 19 . 2 (𝑅 ∈ *-Ring → ((*rf𝑅)‘ 0 ) = ( 0 ))
10 eqid 2824 . . . 4 (oppr𝑅) = (oppr𝑅)
1110, 7srngrhm 19206 . . 3 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
12 rhmghm 19080 . . 3 ((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) → (*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)))
1310, 4oppr0 18986 . . . 4 0 = (0g‘(oppr𝑅))
144, 13ghmid 18016 . . 3 ((*rf𝑅) ∈ (𝑅 GrpHom (oppr𝑅)) → ((*rf𝑅)‘ 0 ) = 0 )
1511, 12, 143syl 18 . 2 (𝑅 ∈ *-Ring → ((*rf𝑅)‘ 0 ) = 0 )
169, 15eqtr3d 2862 1 (𝑅 ∈ *-Ring → ( 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cfv 6122  (class class class)co 6904  Basecbs 16221  *𝑟cstv 16306  0gc0g 16452  Grpcgrp 17775   GrpHom cghm 18007  Ringcrg 18900  opprcoppr 18975   RingHom crh 19067  *rfcstf 19198  *-Ringcsr 19199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-tpos 7616  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-er 8008  df-map 8123  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-plusg 16317  df-mulr 16318  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-mhm 17687  df-grp 17778  df-ghm 18008  df-mgp 18843  df-ur 18855  df-ring 18902  df-oppr 18976  df-rnghom 19070  df-staf 19200  df-srng 19201
This theorem is referenced by:  iporthcom  20341  ip0r  20343
  Copyright terms: Public domain W3C validator