![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srng0 | Structured version Visualization version GIF version |
Description: The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
srng0.i | ⊢ ∗ = (*𝑟‘𝑅) |
srng0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
srng0 | ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srngring 20603 | . . 3 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
2 | ringgrp 20132 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | eqid 2732 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | srng0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 3, 4 | grpidcl 18886 | . . 3 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
6 | srng0.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
7 | eqid 2732 | . . . 4 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
8 | 3, 6, 7 | stafval 20599 | . . 3 ⊢ ( 0 ∈ (Base‘𝑅) → ((*rf‘𝑅)‘ 0 ) = ( ∗ ‘ 0 )) |
9 | 1, 2, 5, 8 | 4syl 19 | . 2 ⊢ (𝑅 ∈ *-Ring → ((*rf‘𝑅)‘ 0 ) = ( ∗ ‘ 0 )) |
10 | eqid 2732 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
11 | 10, 7 | srngrhm 20602 | . . 3 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
12 | rhmghm 20375 | . . 3 ⊢ ((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) → (*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅))) | |
13 | 10, 4 | oppr0 20240 | . . . 4 ⊢ 0 = (0g‘(oppr‘𝑅)) |
14 | 4, 13 | ghmid 19136 | . . 3 ⊢ ((*rf‘𝑅) ∈ (𝑅 GrpHom (oppr‘𝑅)) → ((*rf‘𝑅)‘ 0 ) = 0 ) |
15 | 11, 12, 14 | 3syl 18 | . 2 ⊢ (𝑅 ∈ *-Ring → ((*rf‘𝑅)‘ 0 ) = 0 ) |
16 | 9, 15 | eqtr3d 2774 | 1 ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 *𝑟cstv 17203 0gc0g 17389 Grpcgrp 18855 GrpHom cghm 19127 Ringcrg 20127 opprcoppr 20224 RingHom crh 20360 *rfcstf 20594 *-Ringcsr 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-ghm 19128 df-mgp 20029 df-ur 20076 df-ring 20129 df-oppr 20225 df-rhm 20363 df-staf 20596 df-srng 20597 |
This theorem is referenced by: iporthcom 21407 ip0r 21409 |
Copyright terms: Public domain | W3C validator |