Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srngmul | Structured version Visualization version GIF version |
Description: The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
srngcl.i | ⊢ ∗ = (*𝑟‘𝑅) |
srngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
srngmul.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
srngmul | ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 · 𝑌)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | eqid 2737 | . . . . 5 ⊢ (*rf‘𝑅) = (*rf‘𝑅) | |
3 | 1, 2 | srngrhm 19887 | . . . 4 ⊢ (𝑅 ∈ *-Ring → (*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅))) |
4 | srngcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | srngmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
6 | eqid 2737 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
7 | 4, 5, 6 | rhmmul 19747 | . . . 4 ⊢ (((*rf‘𝑅) ∈ (𝑅 RingHom (oppr‘𝑅)) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 · 𝑌)) = (((*rf‘𝑅)‘𝑋)(.r‘(oppr‘𝑅))((*rf‘𝑅)‘𝑌))) |
8 | 3, 7 | syl3an1 1165 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 · 𝑌)) = (((*rf‘𝑅)‘𝑋)(.r‘(oppr‘𝑅))((*rf‘𝑅)‘𝑌))) |
9 | 4, 5, 1, 6 | opprmul 19644 | . . 3 ⊢ (((*rf‘𝑅)‘𝑋)(.r‘(oppr‘𝑅))((*rf‘𝑅)‘𝑌)) = (((*rf‘𝑅)‘𝑌) · ((*rf‘𝑅)‘𝑋)) |
10 | 8, 9 | eqtrdi 2794 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 · 𝑌)) = (((*rf‘𝑅)‘𝑌) · ((*rf‘𝑅)‘𝑋))) |
11 | srngring 19888 | . . . 4 ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | |
12 | 4, 5 | ringcl 19579 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
13 | 11, 12 | syl3an1 1165 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
14 | srngcl.i | . . . 4 ⊢ ∗ = (*𝑟‘𝑅) | |
15 | 4, 14, 2 | stafval 19884 | . . 3 ⊢ ((𝑋 · 𝑌) ∈ 𝐵 → ((*rf‘𝑅)‘(𝑋 · 𝑌)) = ( ∗ ‘(𝑋 · 𝑌))) |
16 | 13, 15 | syl 17 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘(𝑋 · 𝑌)) = ( ∗ ‘(𝑋 · 𝑌))) |
17 | 4, 14, 2 | stafval 19884 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
18 | 17 | 3ad2ant3 1137 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑌) = ( ∗ ‘𝑌)) |
19 | 4, 14, 2 | stafval 19884 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
20 | 19 | 3ad2ant2 1136 | . . 3 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((*rf‘𝑅)‘𝑋) = ( ∗ ‘𝑋)) |
21 | 18, 20 | oveq12d 7231 | . 2 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((*rf‘𝑅)‘𝑌) · ((*rf‘𝑅)‘𝑋)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) |
22 | 10, 16, 21 | 3eqtr3d 2785 | 1 ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 · 𝑌)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 .rcmulr 16803 *𝑟cstv 16804 Ringcrg 19562 opprcoppr 19640 RingHom crh 19732 *rfcstf 19879 *-Ringcsr 19880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-ghm 18620 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-rnghom 19735 df-staf 19881 df-srng 19882 |
This theorem is referenced by: ipassr 20608 |
Copyright terms: Public domain | W3C validator |