MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srngmul Structured version   Visualization version   GIF version

Theorem srngmul 20870
Description: The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
srngcl.i = (*𝑟𝑅)
srngcl.b 𝐵 = (Base‘𝑅)
srngmul.t · = (.r𝑅)
Assertion
Ref Expression
srngmul ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 · 𝑌)) = (( 𝑌) · ( 𝑋)))

Proof of Theorem srngmul
StepHypRef Expression
1 eqid 2735 . . . . 5 (oppr𝑅) = (oppr𝑅)
2 eqid 2735 . . . . 5 (*rf𝑅) = (*rf𝑅)
31, 2srngrhm 20863 . . . 4 (𝑅 ∈ *-Ring → (*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)))
4 srngcl.b . . . . 5 𝐵 = (Base‘𝑅)
5 srngmul.t . . . . 5 · = (.r𝑅)
6 eqid 2735 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
74, 5, 6rhmmul 20503 . . . 4 (((*rf𝑅) ∈ (𝑅 RingHom (oppr𝑅)) ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 · 𝑌)) = (((*rf𝑅)‘𝑋)(.r‘(oppr𝑅))((*rf𝑅)‘𝑌)))
83, 7syl3an1 1162 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 · 𝑌)) = (((*rf𝑅)‘𝑋)(.r‘(oppr𝑅))((*rf𝑅)‘𝑌)))
94, 5, 1, 6opprmul 20354 . . 3 (((*rf𝑅)‘𝑋)(.r‘(oppr𝑅))((*rf𝑅)‘𝑌)) = (((*rf𝑅)‘𝑌) · ((*rf𝑅)‘𝑋))
108, 9eqtrdi 2791 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 · 𝑌)) = (((*rf𝑅)‘𝑌) · ((*rf𝑅)‘𝑋)))
11 srngring 20864 . . . 4 (𝑅 ∈ *-Ring → 𝑅 ∈ Ring)
124, 5ringcl 20268 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
1311, 12syl3an1 1162 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
14 srngcl.i . . . 4 = (*𝑟𝑅)
154, 14, 2stafval 20860 . . 3 ((𝑋 · 𝑌) ∈ 𝐵 → ((*rf𝑅)‘(𝑋 · 𝑌)) = ( ‘(𝑋 · 𝑌)))
1613, 15syl 17 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘(𝑋 · 𝑌)) = ( ‘(𝑋 · 𝑌)))
174, 14, 2stafval 20860 . . . 4 (𝑌𝐵 → ((*rf𝑅)‘𝑌) = ( 𝑌))
18173ad2ant3 1134 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑌) = ( 𝑌))
194, 14, 2stafval 20860 . . . 4 (𝑋𝐵 → ((*rf𝑅)‘𝑋) = ( 𝑋))
20193ad2ant2 1133 . . 3 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ((*rf𝑅)‘𝑋) = ( 𝑋))
2118, 20oveq12d 7449 . 2 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → (((*rf𝑅)‘𝑌) · ((*rf𝑅)‘𝑋)) = (( 𝑌) · ( 𝑋)))
2210, 16, 213eqtr3d 2783 1 ((𝑅 ∈ *-Ring ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 · 𝑌)) = (( 𝑌) · ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  *𝑟cstv 17300  Ringcrg 20251  opprcoppr 20350   RingHom crh 20486  *rfcstf 20855  *-Ringcsr 20856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-oppr 20351  df-rhm 20489  df-staf 20857  df-srng 20858
This theorem is referenced by:  ipassr  21682
  Copyright terms: Public domain W3C validator