![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sticl | Structured version Visualization version GIF version |
Description: [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sticl | ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isst 31453 | . . 3 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
2 | 1 | simp1bi 1145 | . 2 ⊢ (𝑆 ∈ States → 𝑆: Cℋ ⟶(0[,]1)) |
3 | ffvelcdm 7080 | . . 3 ⊢ ((𝑆: Cℋ ⟶(0[,]1) ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ (0[,]1)) | |
4 | 3 | ex 413 | . 2 ⊢ (𝑆: Cℋ ⟶(0[,]1) → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 [,]cicc 13323 ℋchba 30159 Cℋ cch 30169 ⊥cort 30170 ∨ℋ chj 30173 Statescst 30202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-hilex 30239 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-sh 30447 df-ch 30461 df-st 31451 |
This theorem is referenced by: stcl 31456 stge0 31464 stle1 31465 |
Copyright terms: Public domain | W3C validator |