![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sticl | Structured version Visualization version GIF version |
Description: [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sticl | ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isst 32241 | . . 3 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
2 | 1 | simp1bi 1144 | . 2 ⊢ (𝑆 ∈ States → 𝑆: Cℋ ⟶(0[,]1)) |
3 | ffvelcdm 7100 | . . 3 ⊢ ((𝑆: Cℋ ⟶(0[,]1) ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ (0[,]1)) | |
4 | 3 | ex 412 | . 2 ⊢ (𝑆: Cℋ ⟶(0[,]1) → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 0cc0 11152 1c1 11153 + caddc 11155 [,]cicc 13386 ℋchba 30947 Cℋ cch 30957 ⊥cort 30958 ∨ℋ chj 30961 Statescst 30990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-hilex 31027 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-sh 31235 df-ch 31249 df-st 32239 |
This theorem is referenced by: stcl 32244 stge0 32252 stle1 32253 |
Copyright terms: Public domain | W3C validator |