HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sticl Structured version   Visualization version   GIF version

Theorem sticl 30577
Description: [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sticl (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))

Proof of Theorem sticl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isst 30575 . . 3 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
21simp1bi 1144 . 2 (𝑆 ∈ States → 𝑆: C ⟶(0[,]1))
3 ffvelrn 6959 . . 3 ((𝑆: C ⟶(0[,]1) ∧ 𝐴C ) → (𝑆𝐴) ∈ (0[,]1))
43ex 413 . 2 (𝑆: C ⟶(0[,]1) → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
52, 4syl 17 1 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  wss 3887  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  [,]cicc 13082  chba 29281   C cch 29291  cort 29292   chj 29295  Statescst 29324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-sh 29569  df-ch 29583  df-st 30573
This theorem is referenced by:  stcl  30578  stge0  30586  stle1  30587
  Copyright terms: Public domain W3C validator