HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sticl Structured version   Visualization version   GIF version

Theorem sticl 32144
Description: [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sticl (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))

Proof of Theorem sticl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isst 32142 . . 3 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
21simp1bi 1145 . 2 (𝑆 ∈ States → 𝑆: C ⟶(0[,]1))
3 ffvelcdm 7053 . . 3 ((𝑆: C ⟶(0[,]1) ∧ 𝐴C ) → (𝑆𝐴) ∈ (0[,]1))
43ex 412 . 2 (𝑆: C ⟶(0[,]1) → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
52, 4syl 17 1 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wss 3914  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  [,]cicc 13309  chba 30848   C cch 30858  cort 30859   chj 30862  Statescst 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-sh 31136  df-ch 31150  df-st 32140
This theorem is referenced by:  stcl  32145  stge0  32153  stle1  32154
  Copyright terms: Public domain W3C validator