![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sticl | Structured version Visualization version GIF version |
Description: [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sticl | ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isst 31329 | . . 3 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
2 | 1 | simp1bi 1145 | . 2 ⊢ (𝑆 ∈ States → 𝑆: Cℋ ⟶(0[,]1)) |
3 | ffvelcdm 7068 | . . 3 ⊢ ((𝑆: Cℋ ⟶(0[,]1) ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ (0[,]1)) | |
4 | 3 | ex 413 | . 2 ⊢ (𝑆: Cℋ ⟶(0[,]1) → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ⊆ wss 3944 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 0cc0 11092 1c1 11093 + caddc 11095 [,]cicc 13309 ℋchba 30035 Cℋ cch 30045 ⊥cort 30046 ∨ℋ chj 30049 Statescst 30078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-hilex 30115 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-map 8805 df-sh 30323 df-ch 30337 df-st 31327 |
This theorem is referenced by: stcl 31332 stge0 31340 stle1 31341 |
Copyright terms: Public domain | W3C validator |