| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sticl | Structured version Visualization version GIF version | ||
| Description: [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sticl | ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isst 32175 | . . 3 ⊢ (𝑆 ∈ States ↔ (𝑆: Cℋ ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) + (𝑆‘𝑦))))) | |
| 2 | 1 | simp1bi 1145 | . 2 ⊢ (𝑆 ∈ States → 𝑆: Cℋ ⟶(0[,]1)) |
| 3 | ffvelcdm 7019 | . . 3 ⊢ ((𝑆: Cℋ ⟶(0[,]1) ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ (0[,]1)) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝑆: Cℋ ⟶(0[,]1) → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 [,]cicc 13269 ℋchba 30881 Cℋ cch 30891 ⊥cort 30892 ∨ℋ chj 30895 Statescst 30924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-hilex 30961 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-sh 31169 df-ch 31183 df-st 32173 |
| This theorem is referenced by: stcl 32178 stge0 32186 stle1 32187 |
| Copyright terms: Public domain | W3C validator |