HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcl Structured version   Visualization version   GIF version

Theorem stcl 29997
Description: Real closure of the value of a state. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
stcl (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))

Proof of Theorem stcl
StepHypRef Expression
1 sticl 29996 . 2 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
2 unitssre 12877 . . 3 (0[,]1) ⊆ ℝ
32sseli 3938 . 2 ((𝑆𝐴) ∈ (0[,]1) → (𝑆𝐴) ∈ ℝ)
41, 3syl6 35 1 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  cfv 6334  (class class class)co 7140  cr 10525  0cc0 10526  1c1 10527  [,]cicc 12729   C cch 28710  Statescst 28743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-i2m1 10594  ax-1ne0 10595  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-hilex 28780
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-icc 12733  df-sh 28988  df-ch 29002  df-st 29992
This theorem is referenced by:  sto2i  30018  stge1i  30019  stle0i  30020  stlei  30021  stlesi  30022  staddi  30027  stadd3i  30029  strlem6  30037  golem1  30052  stcltrlem1  30057
  Copyright terms: Public domain W3C validator