![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > stge0 | Structured version Visualization version GIF version |
Description: The value of a state is nonnegative. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
stge0 | ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticl 32024 | . 2 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ (0[,]1))) | |
2 | elicc01 13475 | . . 3 ⊢ ((𝑆‘𝐴) ∈ (0[,]1) ↔ ((𝑆‘𝐴) ∈ ℝ ∧ 0 ≤ (𝑆‘𝐴) ∧ (𝑆‘𝐴) ≤ 1)) | |
3 | 2 | simp2bi 1144 | . 2 ⊢ ((𝑆‘𝐴) ∈ (0[,]1) → 0 ≤ (𝑆‘𝐴)) |
4 | 1, 3 | syl6 35 | 1 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℝcr 11137 0cc0 11138 1c1 11139 ≤ cle 11279 [,]cicc 13359 Cℋ cch 30738 Statescst 30771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-i2m1 11206 ax-1ne0 11207 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-hilex 30808 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-icc 13363 df-sh 31016 df-ch 31030 df-st 32020 |
This theorem is referenced by: stle0i 32048 |
Copyright terms: Public domain | W3C validator |