HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stge0 Structured version   Visualization version   GIF version

Theorem stge0 29539
Description: The value of a state is nonnegative. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
stge0 (𝑆 ∈ States → (𝐴C → 0 ≤ (𝑆𝐴)))

Proof of Theorem stge0
StepHypRef Expression
1 sticl 29530 . 2 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
2 elicc01 12494 . . 3 ((𝑆𝐴) ∈ (0[,]1) ↔ ((𝑆𝐴) ∈ ℝ ∧ 0 ≤ (𝑆𝐴) ∧ (𝑆𝐴) ≤ 1))
32simp2bi 1176 . 2 ((𝑆𝐴) ∈ (0[,]1) → 0 ≤ (𝑆𝐴))
41, 3syl6 35 1 (𝑆 ∈ States → (𝐴C → 0 ≤ (𝑆𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2155   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190  cle 10329  [,]cicc 12380   C cch 28242  Statescst 28275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-i2m1 10257  ax-1ne0 10258  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-hilex 28312
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-icc 12384  df-sh 28520  df-ch 28534  df-st 29526
This theorem is referenced by:  stle0i  29554
  Copyright terms: Public domain W3C validator