Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supsn | Structured version Visualization version GIF version |
Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
Ref | Expression |
---|---|
supsn | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4579 | . . . 4 ⊢ {𝐵} = {𝐵, 𝐵} | |
2 | 1 | supeq1i 9167 | . . 3 ⊢ sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅) |
3 | suppr 9191 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) | |
4 | 3 | 3anidm23 1419 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
5 | 2, 4 | eqtrid 2791 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
6 | ifid 4504 | . 2 ⊢ if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵 | |
7 | 5, 6 | eqtrdi 2795 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ifcif 4464 {csn 4566 {cpr 4568 class class class wbr 5078 Or wor 5501 supcsup 9160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-po 5502 df-so 5503 df-iota 6388 df-riota 7225 df-sup 9162 |
This theorem is referenced by: supxrmnf 13033 ramz 16707 xpsdsval 23515 ovolctb 24635 nmoo0 29132 nmop0 30327 nmfn0 30328 esumnul 31995 esum0 31996 ovoliunnfl 35798 voliunnfl 35800 volsupnfl 35801 liminf10ex 43269 fourierdlem79 43680 sge0z 43867 sge00 43868 |
Copyright terms: Public domain | W3C validator |