![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supsn | Structured version Visualization version GIF version |
Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
Ref | Expression |
---|---|
supsn | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4641 | . . . 4 ⊢ {𝐵} = {𝐵, 𝐵} | |
2 | 1 | supeq1i 9441 | . . 3 ⊢ sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅) |
3 | suppr 9465 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) | |
4 | 3 | 3anidm23 1421 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
5 | 2, 4 | eqtrid 2784 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
6 | ifid 4568 | . 2 ⊢ if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵 | |
7 | 5, 6 | eqtrdi 2788 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4528 {csn 4628 {cpr 4630 class class class wbr 5148 Or wor 5587 supcsup 9434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-po 5588 df-so 5589 df-iota 6495 df-riota 7364 df-sup 9436 |
This theorem is referenced by: supxrmnf 13295 ramz 16957 xpsdsval 23886 ovolctb 25006 nmoo0 30039 nmop0 31234 nmfn0 31235 esumnul 33041 esum0 33042 ovoliunnfl 36525 voliunnfl 36527 volsupnfl 36528 liminf10ex 44480 fourierdlem79 44891 sge0z 45081 sge00 45082 |
Copyright terms: Public domain | W3C validator |