MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsn Structured version   Visualization version   GIF version

Theorem supsn 8534
Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
supsn ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)

Proof of Theorem supsn
StepHypRef Expression
1 dfsn2 4329 . . . 4 {𝐵} = {𝐵, 𝐵}
21supeq1i 8509 . . 3 sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅)
3 suppr 8533 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
433anidm23 1531 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
52, 4syl5eq 2817 . 2 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
6 ifid 4264 . 2 if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵
75, 6syl6eq 2821 1 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  ifcif 4225  {csn 4316  {cpr 4318   class class class wbr 4786   Or wor 5169  supcsup 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-po 5170  df-so 5171  df-iota 5994  df-riota 6754  df-sup 8504
This theorem is referenced by:  supxrmnf  12352  ramz  15936  xpsdsval  22406  ovolctb  23478  nmoo0  27986  nmop0  29185  nmfn0  29186  esumnul  30450  esum0  30451  ovoliunnfl  33784  voliunnfl  33786  volsupnfl  33787  liminf10ex  40524  fourierdlem79  40919  sge0z  41109  sge00  41110
  Copyright terms: Public domain W3C validator