| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supsn | Structured version Visualization version GIF version | ||
| Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
| Ref | Expression |
|---|---|
| supsn | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4619 | . . . 4 ⊢ {𝐵} = {𝐵, 𝐵} | |
| 2 | 1 | supeq1i 9464 | . . 3 ⊢ sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅) |
| 3 | suppr 9489 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) | |
| 4 | 3 | 3anidm23 1423 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
| 5 | 2, 4 | eqtrid 2783 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
| 6 | ifid 4546 | . 2 ⊢ if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵 | |
| 7 | 5, 6 | eqtrdi 2787 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4505 {csn 4606 {cpr 4608 class class class wbr 5124 Or wor 5565 supcsup 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-po 5566 df-so 5567 df-iota 6489 df-riota 7367 df-sup 9459 |
| This theorem is referenced by: supxrmnf 13338 ramz 17050 xpsdsval 24325 ovolctb 25448 nmoo0 30777 nmop0 31972 nmfn0 31973 esumnul 34084 esum0 34085 ovoliunnfl 37691 voliunnfl 37693 volsupnfl 37694 liminf10ex 45770 fourierdlem79 46181 sge0z 46371 sge00 46372 |
| Copyright terms: Public domain | W3C validator |