MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsn Structured version   Visualization version   GIF version

Theorem supsn 9467
Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
supsn ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)

Proof of Theorem supsn
StepHypRef Expression
1 dfsn2 4642 . . . 4 {𝐵} = {𝐵, 𝐵}
21supeq1i 9442 . . 3 sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅)
3 suppr 9466 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
433anidm23 1422 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
52, 4eqtrid 2785 . 2 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
6 ifid 4569 . 2 if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵
75, 6eqtrdi 2789 1 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4529  {csn 4629  {cpr 4631   class class class wbr 5149   Or wor 5588  supcsup 9435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-po 5589  df-so 5590  df-iota 6496  df-riota 7365  df-sup 9437
This theorem is referenced by:  supxrmnf  13296  ramz  16958  xpsdsval  23887  ovolctb  25007  nmoo0  30044  nmop0  31239  nmfn0  31240  esumnul  33046  esum0  33047  ovoliunnfl  36530  voliunnfl  36532  volsupnfl  36533  liminf10ex  44490  fourierdlem79  44901  sge0z  45091  sge00  45092
  Copyright terms: Public domain W3C validator