| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supsn | Structured version Visualization version GIF version | ||
| Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
| Ref | Expression |
|---|---|
| supsn | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4590 | . . . 4 ⊢ {𝐵} = {𝐵, 𝐵} | |
| 2 | 1 | supeq1i 9340 | . . 3 ⊢ sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅) |
| 3 | suppr 9365 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) | |
| 4 | 3 | 3anidm23 1423 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
| 5 | 2, 4 | eqtrid 2780 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵)) |
| 6 | ifid 4517 | . 2 ⊢ if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵 | |
| 7 | 5, 6 | eqtrdi 2784 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ifcif 4476 {csn 4577 {cpr 4579 class class class wbr 5095 Or wor 5528 supcsup 9333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-po 5529 df-so 5530 df-iota 6444 df-riota 7311 df-sup 9335 |
| This theorem is referenced by: supxrmnf 13220 ramz 16941 xpsdsval 24299 ovolctb 25421 nmoo0 30775 nmop0 31970 nmfn0 31971 esumnul 34084 esum0 34085 ovoliunnfl 37725 voliunnfl 37727 volsupnfl 37728 liminf10ex 45899 fourierdlem79 46310 sge0z 46500 sge00 46501 |
| Copyright terms: Public domain | W3C validator |