MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsn Structured version   Visualization version   GIF version

Theorem supsn 9513
Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
supsn ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)

Proof of Theorem supsn
StepHypRef Expression
1 dfsn2 4638 . . . 4 {𝐵} = {𝐵, 𝐵}
21supeq1i 9488 . . 3 sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅)
3 suppr 9512 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
433anidm23 1422 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
52, 4eqtrid 2788 . 2 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
6 ifid 4565 . 2 if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵
75, 6eqtrdi 2792 1 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4524  {csn 4625  {cpr 4627   class class class wbr 5142   Or wor 5590  supcsup 9481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-po 5591  df-so 5592  df-iota 6513  df-riota 7389  df-sup 9483
This theorem is referenced by:  supxrmnf  13360  ramz  17064  xpsdsval  24392  ovolctb  25526  nmoo0  30811  nmop0  32006  nmfn0  32007  esumnul  34050  esum0  34051  ovoliunnfl  37670  voliunnfl  37672  volsupnfl  37673  liminf10ex  45794  fourierdlem79  46205  sge0z  46395  sge00  46396
  Copyright terms: Public domain W3C validator