MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsn Structured version   Visualization version   GIF version

Theorem supsn 9424
Description: The supremum of a singleton. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
supsn ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)

Proof of Theorem supsn
StepHypRef Expression
1 dfsn2 4602 . . . 4 {𝐵} = {𝐵, 𝐵}
21supeq1i 9398 . . 3 sup({𝐵}, 𝐴, 𝑅) = sup({𝐵, 𝐵}, 𝐴, 𝑅)
3 suppr 9423 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
433anidm23 1423 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵, 𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
52, 4eqtrid 2776 . 2 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = if(𝐵𝑅𝐵, 𝐵, 𝐵))
6 ifid 4529 . 2 if(𝐵𝑅𝐵, 𝐵, 𝐵) = 𝐵
75, 6eqtrdi 2780 1 ((𝑅 Or 𝐴𝐵𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488  {csn 4589  {cpr 4591   class class class wbr 5107   Or wor 5545  supcsup 9391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-po 5546  df-so 5547  df-iota 6464  df-riota 7344  df-sup 9393
This theorem is referenced by:  supxrmnf  13277  ramz  16996  xpsdsval  24269  ovolctb  25391  nmoo0  30720  nmop0  31915  nmfn0  31916  esumnul  34038  esum0  34039  ovoliunnfl  37656  voliunnfl  37658  volsupnfl  37659  liminf10ex  45772  fourierdlem79  46183  sge0z  46373  sge00  46374
  Copyright terms: Public domain W3C validator