![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esum0 | Structured version Visualization version GIF version |
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
Ref | Expression |
---|---|
esum0.k | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
esum0 | ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esum0.k | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | 1 | nfel1 2924 | . . 3 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0e0iccpnf 13383 | . . . 4 ⊢ 0 ∈ (0[,]+∞) | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,]+∞)) |
6 | xrge0cmn 20855 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
7 | cmnmnd 19586 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
9 | vex 3452 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | xrge00 31919 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
11 | 10 | gsumz 18653 | . . . . 5 ⊢ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
12 | 8, 9, 11 | mp2an 691 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0 |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
14 | 2, 1, 3, 5, 13 | esumval 32685 | . 2 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < )) |
15 | fconstmpt 5699 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
16 | 15 | eqcomi 2746 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) |
17 | 0xr 11209 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
18 | 17 | rgenw 3069 | . . . . . . . 8 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* |
19 | eqid 2737 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
20 | 19 | fnmpt 6646 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)) |
21 | 18, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) |
22 | 0elpw 5316 | . . . . . . . . 9 ⊢ ∅ ∈ 𝒫 𝐴 | |
23 | 0fin 9122 | . . . . . . . . 9 ⊢ ∅ ∈ Fin | |
24 | elin 3931 | . . . . . . . . 9 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin)) | |
25 | 22, 23, 24 | mpbir2an 710 | . . . . . . . 8 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
26 | 25 | ne0ii 4302 | . . . . . . 7 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
27 | fconst5 7160 | . . . . . . 7 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})) | |
28 | 21, 26, 27 | mp2an 691 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
29 | 16, 28 | mpbi 229 | . . . . 5 ⊢ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0} |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
31 | 30 | supeq1d 9389 | . . 3 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )) |
32 | xrltso 13067 | . . . 4 ⊢ < Or ℝ* | |
33 | supsn 9415 | . . . 4 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
34 | 32, 17, 33 | mp2an 691 | . . 3 ⊢ sup({0}, ℝ*, < ) = 0 |
35 | 31, 34 | eqtrdi 2793 | . 2 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0) |
36 | 14, 35 | eqtrd 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2888 ≠ wne 2944 ∀wral 3065 Vcvv 3448 ∩ cin 3914 ∅c0 4287 𝒫 cpw 4565 {csn 4591 ↦ cmpt 5193 Or wor 5549 × cxp 5636 ran crn 5639 Fn wfn 6496 (class class class)co 7362 Fincfn 8890 supcsup 9383 0cc0 11058 +∞cpnf 11193 ℝ*cxr 11195 < clt 11196 [,]cicc 13274 ↾s cress 17119 Σg cgsu 17329 ℝ*𝑠cxrs 17389 Mndcmnd 18563 CMndccmn 19569 Σ*cesum 32666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-supp 8098 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fsupp 9313 df-fi 9354 df-sup 9385 df-inf 9386 df-oi 9453 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-uz 12771 df-q 12881 df-xadd 13041 df-ioo 13275 df-ioc 13276 df-ico 13277 df-icc 13278 df-fz 13432 df-fzo 13575 df-seq 13914 df-hash 14238 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-tset 17159 df-ple 17160 df-ds 17162 df-rest 17311 df-topn 17312 df-0g 17330 df-gsum 17331 df-topgen 17332 df-ordt 17390 df-xrs 17391 df-mre 17473 df-mrc 17474 df-acs 17476 df-ps 18462 df-tsr 18463 df-mgm 18504 df-sgrp 18553 df-mnd 18564 df-submnd 18609 df-cntz 19104 df-cmn 19571 df-fbas 20809 df-fg 20810 df-top 22259 df-topon 22276 df-topsp 22298 df-bases 22312 df-ntr 22387 df-nei 22465 df-cn 22594 df-haus 22682 df-fil 23213 df-fm 23305 df-flim 23306 df-flf 23307 df-tsms 23494 df-esum 32667 |
This theorem is referenced by: esumpad 32694 esumrnmpt2 32707 measvunilem0 32852 ddemeas 32875 |
Copyright terms: Public domain | W3C validator |