Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esum0 Structured version   Visualization version   GIF version

Theorem esum0 34029
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.)
Hypothesis
Ref Expression
esum0.k 𝑘𝐴
Assertion
Ref Expression
esum0 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Distinct variable group:   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem esum0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esum0.k . . . 4 𝑘𝐴
21nfel1 2919 . . 3 𝑘 𝐴𝑉
3 id 22 . . 3 (𝐴𝑉𝐴𝑉)
4 0e0iccpnf 13495 . . . 4 0 ∈ (0[,]+∞)
54a1i 11 . . 3 ((𝐴𝑉𝑘𝐴) → 0 ∈ (0[,]+∞))
6 xrge0cmn 21443 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7 cmnmnd 19829 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
86, 7ax-mp 5 . . . . 5 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
9 vex 3481 . . . . 5 𝑥 ∈ V
10 xrge00 32999 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
1110gsumz 18861 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
128, 9, 11mp2an 692 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0
1312a1i 11 . . 3 ((𝐴𝑉𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
142, 1, 3, 5, 13esumval 34026 . 2 (𝐴𝑉 → Σ*𝑘𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ))
15 fconstmpt 5750 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
1615eqcomi 2743 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0})
17 0xr 11305 . . . . . . . . 9 0 ∈ ℝ*
1817rgenw 3062 . . . . . . . 8 𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ*
19 eqid 2734 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
2019fnmpt 6708 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin))
2118, 20ax-mp 5 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)
22 0elpw 5361 . . . . . . . . 9 ∅ ∈ 𝒫 𝐴
23 0fi 9080 . . . . . . . . 9 ∅ ∈ Fin
24 elin 3978 . . . . . . . . 9 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
2522, 23, 24mpbir2an 711 . . . . . . . 8 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2625ne0ii 4349 . . . . . . 7 (𝒫 𝐴 ∩ Fin) ≠ ∅
27 fconst5 7225 . . . . . . 7 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}))
2821, 26, 27mp2an 692 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2916, 28mpbi 230 . . . . 5 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}
3029a1i 11 . . . 4 (𝐴𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
3130supeq1d 9483 . . 3 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ))
32 xrltso 13179 . . . 4 < Or ℝ*
33 supsn 9509 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3432, 17, 33mp2an 692 . . 3 sup({0}, ℝ*, < ) = 0
3531, 34eqtrdi 2790 . 2 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0)
3614, 35eqtrd 2774 1 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wnfc 2887  wne 2937  wral 3058  Vcvv 3477  cin 3961  c0 4338  𝒫 cpw 4604  {csn 4630  cmpt 5230   Or wor 5595   × cxp 5686  ran crn 5689   Fn wfn 6557  (class class class)co 7430  Fincfn 8983  supcsup 9477  0cc0 11152  +∞cpnf 11289  *cxr 11291   < clt 11292  [,]cicc 13386  s cress 17273   Σg cgsu 17486  *𝑠cxrs 17546  Mndcmnd 18759  CMndccmn 19812  Σ*cesum 34007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-xadd 13152  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-ordt 17547  df-xrs 17548  df-mre 17630  df-mrc 17631  df-acs 17633  df-ps 18623  df-tsr 18624  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-cntz 19347  df-cmn 19814  df-fbas 21378  df-fg 21379  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-ntr 23043  df-nei 23121  df-cn 23250  df-haus 23338  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-tsms 24150  df-esum 34008
This theorem is referenced by:  esumpad  34035  esumrnmpt2  34048  measvunilem0  34193  ddemeas  34216
  Copyright terms: Public domain W3C validator