Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esum0 Structured version   Visualization version   GIF version

Theorem esum0 33838
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.)
Hypothesis
Ref Expression
esum0.k 𝑘𝐴
Assertion
Ref Expression
esum0 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Distinct variable group:   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem esum0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esum0.k . . . 4 𝑘𝐴
21nfel1 2908 . . 3 𝑘 𝐴𝑉
3 id 22 . . 3 (𝐴𝑉𝐴𝑉)
4 0e0iccpnf 13485 . . . 4 0 ∈ (0[,]+∞)
54a1i 11 . . 3 ((𝐴𝑉𝑘𝐴) → 0 ∈ (0[,]+∞))
6 xrge0cmn 21397 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7 cmnmnd 19790 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
86, 7ax-mp 5 . . . . 5 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
9 vex 3465 . . . . 5 𝑥 ∈ V
10 xrge00 32873 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
1110gsumz 18821 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
128, 9, 11mp2an 690 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0
1312a1i 11 . . 3 ((𝐴𝑉𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
142, 1, 3, 5, 13esumval 33835 . 2 (𝐴𝑉 → Σ*𝑘𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ))
15 fconstmpt 5743 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
1615eqcomi 2734 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0})
17 0xr 11307 . . . . . . . . 9 0 ∈ ℝ*
1817rgenw 3054 . . . . . . . 8 𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ*
19 eqid 2725 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
2019fnmpt 6700 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin))
2118, 20ax-mp 5 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)
22 0elpw 5359 . . . . . . . . 9 ∅ ∈ 𝒫 𝐴
23 0fi 9079 . . . . . . . . 9 ∅ ∈ Fin
24 elin 3962 . . . . . . . . 9 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
2522, 23, 24mpbir2an 709 . . . . . . . 8 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2625ne0ii 4339 . . . . . . 7 (𝒫 𝐴 ∩ Fin) ≠ ∅
27 fconst5 7222 . . . . . . 7 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}))
2821, 26, 27mp2an 690 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2916, 28mpbi 229 . . . . 5 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}
3029a1i 11 . . . 4 (𝐴𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
3130supeq1d 9485 . . 3 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ))
32 xrltso 13169 . . . 4 < Or ℝ*
33 supsn 9511 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3432, 17, 33mp2an 690 . . 3 sup({0}, ℝ*, < ) = 0
3531, 34eqtrdi 2781 . 2 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0)
3614, 35eqtrd 2765 1 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wnfc 2875  wne 2929  wral 3050  Vcvv 3461  cin 3945  c0 4324  𝒫 cpw 4606  {csn 4632  cmpt 5235   Or wor 5592   × cxp 5679  ran crn 5682   Fn wfn 6548  (class class class)co 7423  Fincfn 8973  supcsup 9479  0cc0 11154  +∞cpnf 11291  *cxr 11293   < clt 11294  [,]cicc 13376  s cress 17237   Σg cgsu 17450  *𝑠cxrs 17510  Mndcmnd 18722  CMndccmn 19773  Σ*cesum 33816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-fsupp 9402  df-fi 9450  df-sup 9481  df-inf 9482  df-oi 9549  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-q 12980  df-xadd 13142  df-ioo 13377  df-ioc 13378  df-ico 13379  df-icc 13380  df-fz 13534  df-fzo 13677  df-seq 14017  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-tset 17280  df-ple 17281  df-ds 17283  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-ordt 17511  df-xrs 17512  df-mre 17594  df-mrc 17595  df-acs 17597  df-ps 18586  df-tsr 18587  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-cntz 19306  df-cmn 19775  df-fbas 21332  df-fg 21333  df-top 22879  df-topon 22896  df-topsp 22918  df-bases 22932  df-ntr 23007  df-nei 23085  df-cn 23214  df-haus 23302  df-fil 23833  df-fm 23925  df-flim 23926  df-flf 23927  df-tsms 24114  df-esum 33817
This theorem is referenced by:  esumpad  33844  esumrnmpt2  33857  measvunilem0  34002  ddemeas  34025
  Copyright terms: Public domain W3C validator