| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esum0 | Structured version Visualization version GIF version | ||
| Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
| Ref | Expression |
|---|---|
| esum0.k | ⊢ Ⅎ𝑘𝐴 |
| Ref | Expression |
|---|---|
| esum0 | ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esum0.k | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
| 2 | 1 | nfel1 2908 | . . 3 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 4 | 0e0iccpnf 13396 | . . . 4 ⊢ 0 ∈ (0[,]+∞) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,]+∞)) |
| 6 | xrge0cmn 21386 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 7 | cmnmnd 19711 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 9 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | xrge00 32998 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 11 | 10 | gsumz 18745 | . . . . 5 ⊢ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
| 12 | 8, 9, 11 | mp2an 692 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0 |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
| 14 | 2, 1, 3, 5, 13 | esumval 34029 | . 2 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < )) |
| 15 | fconstmpt 5693 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
| 16 | 15 | eqcomi 2738 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) |
| 17 | 0xr 11197 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 18 | 17 | rgenw 3048 | . . . . . . . 8 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* |
| 19 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
| 20 | 19 | fnmpt 6640 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)) |
| 21 | 18, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) |
| 22 | 0elpw 5306 | . . . . . . . . 9 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 23 | 0fi 8990 | . . . . . . . . 9 ⊢ ∅ ∈ Fin | |
| 24 | elin 3927 | . . . . . . . . 9 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin)) | |
| 25 | 22, 23, 24 | mpbir2an 711 | . . . . . . . 8 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
| 26 | 25 | ne0ii 4303 | . . . . . . 7 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
| 27 | fconst5 7162 | . . . . . . 7 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})) | |
| 28 | 21, 26, 27 | mp2an 692 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
| 29 | 16, 28 | mpbi 230 | . . . . 5 ⊢ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0} |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
| 31 | 30 | supeq1d 9373 | . . 3 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )) |
| 32 | xrltso 13077 | . . . 4 ⊢ < Or ℝ* | |
| 33 | supsn 9400 | . . . 4 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 34 | 32, 17, 33 | mp2an 692 | . . 3 ⊢ sup({0}, ℝ*, < ) = 0 |
| 35 | 31, 34 | eqtrdi 2780 | . 2 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0) |
| 36 | 14, 35 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 ∀wral 3044 Vcvv 3444 ∩ cin 3910 ∅c0 4292 𝒫 cpw 4559 {csn 4585 ↦ cmpt 5183 Or wor 5538 × cxp 5629 ran crn 5632 Fn wfn 6494 (class class class)co 7369 Fincfn 8895 supcsup 9367 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 [,]cicc 13285 ↾s cress 17176 Σg cgsu 17379 ℝ*𝑠cxrs 17439 Mndcmnd 18643 CMndccmn 19694 Σ*cesum 34010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-xadd 13049 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ds 17218 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-ordt 17440 df-xrs 17441 df-mre 17523 df-mrc 17524 df-acs 17526 df-ps 18507 df-tsr 18508 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-cntz 19231 df-cmn 19696 df-fbas 21293 df-fg 21294 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-ntr 22940 df-nei 23018 df-cn 23147 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tsms 24047 df-esum 34011 |
| This theorem is referenced by: esumpad 34038 esumrnmpt2 34051 measvunilem0 34196 ddemeas 34219 |
| Copyright terms: Public domain | W3C validator |