Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esum0 Structured version   Visualization version   GIF version

Theorem esum0 31308
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.)
Hypothesis
Ref Expression
esum0.k 𝑘𝐴
Assertion
Ref Expression
esum0 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Distinct variable group:   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem esum0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esum0.k . . . 4 𝑘𝐴
21nfel1 2994 . . 3 𝑘 𝐴𝑉
3 id 22 . . 3 (𝐴𝑉𝐴𝑉)
4 0e0iccpnf 12846 . . . 4 0 ∈ (0[,]+∞)
54a1i 11 . . 3 ((𝐴𝑉𝑘𝐴) → 0 ∈ (0[,]+∞))
6 xrge0cmn 20586 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7 cmnmnd 18921 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
86, 7ax-mp 5 . . . . 5 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
9 vex 3497 . . . . 5 𝑥 ∈ V
10 xrge00 30673 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
1110gsumz 17999 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
128, 9, 11mp2an 690 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0
1312a1i 11 . . 3 ((𝐴𝑉𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
142, 1, 3, 5, 13esumval 31305 . 2 (𝐴𝑉 → Σ*𝑘𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ))
15 fconstmpt 5613 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
1615eqcomi 2830 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0})
17 0xr 10687 . . . . . . . . 9 0 ∈ ℝ*
1817rgenw 3150 . . . . . . . 8 𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ*
19 eqid 2821 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
2019fnmpt 6487 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin))
2118, 20ax-mp 5 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)
22 0elpw 5255 . . . . . . . . 9 ∅ ∈ 𝒫 𝐴
23 0fin 8745 . . . . . . . . 9 ∅ ∈ Fin
24 elin 4168 . . . . . . . . 9 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
2522, 23, 24mpbir2an 709 . . . . . . . 8 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2625ne0ii 4302 . . . . . . 7 (𝒫 𝐴 ∩ Fin) ≠ ∅
27 fconst5 6967 . . . . . . 7 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}))
2821, 26, 27mp2an 690 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2916, 28mpbi 232 . . . . 5 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}
3029a1i 11 . . . 4 (𝐴𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
3130supeq1d 8909 . . 3 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ))
32 xrltso 12533 . . . 4 < Or ℝ*
33 supsn 8935 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3432, 17, 33mp2an 690 . . 3 sup({0}, ℝ*, < ) = 0
3531, 34syl6eq 2872 . 2 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0)
3614, 35eqtrd 2856 1 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wnfc 2961  wne 3016  wral 3138  Vcvv 3494  cin 3934  c0 4290  𝒫 cpw 4538  {csn 4566  cmpt 5145   Or wor 5472   × cxp 5552  ran crn 5555   Fn wfn 6349  (class class class)co 7155  Fincfn 8508  supcsup 8903  0cc0 10536  +∞cpnf 10671  *cxr 10673   < clt 10674  [,]cicc 12740  s cress 16483   Σg cgsu 16713  *𝑠cxrs 16772  Mndcmnd 17910  CMndccmn 18905  Σ*cesum 31286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-xadd 12507  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-tset 16583  df-ple 16584  df-ds 16586  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-ordt 16773  df-xrs 16774  df-mre 16856  df-mrc 16857  df-acs 16859  df-ps 17809  df-tsr 17810  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-cntz 18446  df-cmn 18907  df-fbas 20541  df-fg 20542  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-ntr 21627  df-nei 21705  df-cn 21834  df-haus 21922  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-tsms 22734  df-esum 31287
This theorem is referenced by:  esumpad  31314  esumrnmpt2  31327  measvunilem0  31472  ddemeas  31495
  Copyright terms: Public domain W3C validator