Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esum0 | Structured version Visualization version GIF version |
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
Ref | Expression |
---|---|
esum0.k | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
esum0 | ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esum0.k | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | 1 | nfel1 2922 | . . 3 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0e0iccpnf 13120 | . . . 4 ⊢ 0 ∈ (0[,]+∞) | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,]+∞)) |
6 | xrge0cmn 20552 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
7 | cmnmnd 19317 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
9 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | xrge00 31197 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
11 | 10 | gsumz 18389 | . . . . 5 ⊢ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
12 | 8, 9, 11 | mp2an 688 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0 |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
14 | 2, 1, 3, 5, 13 | esumval 31914 | . 2 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < )) |
15 | fconstmpt 5640 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
16 | 15 | eqcomi 2747 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) |
17 | 0xr 10953 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
18 | 17 | rgenw 3075 | . . . . . . . 8 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* |
19 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
20 | 19 | fnmpt 6557 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)) |
21 | 18, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) |
22 | 0elpw 5273 | . . . . . . . . 9 ⊢ ∅ ∈ 𝒫 𝐴 | |
23 | 0fin 8916 | . . . . . . . . 9 ⊢ ∅ ∈ Fin | |
24 | elin 3899 | . . . . . . . . 9 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin)) | |
25 | 22, 23, 24 | mpbir2an 707 | . . . . . . . 8 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
26 | 25 | ne0ii 4268 | . . . . . . 7 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
27 | fconst5 7063 | . . . . . . 7 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})) | |
28 | 21, 26, 27 | mp2an 688 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
29 | 16, 28 | mpbi 229 | . . . . 5 ⊢ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0} |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
31 | 30 | supeq1d 9135 | . . 3 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )) |
32 | xrltso 12804 | . . . 4 ⊢ < Or ℝ* | |
33 | supsn 9161 | . . . 4 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
34 | 32, 17, 33 | mp2an 688 | . . 3 ⊢ sup({0}, ℝ*, < ) = 0 |
35 | 31, 34 | eqtrdi 2795 | . 2 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0) |
36 | 14, 35 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 Or wor 5493 × cxp 5578 ran crn 5581 Fn wfn 6413 (class class class)co 7255 Fincfn 8691 supcsup 9129 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 [,]cicc 13011 ↾s cress 16867 Σg cgsu 17068 ℝ*𝑠cxrs 17128 Mndcmnd 18300 CMndccmn 19301 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-xadd 12778 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-mre 17212 df-mrc 17213 df-acs 17215 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-nei 22157 df-cn 22286 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 |
This theorem is referenced by: esumpad 31923 esumrnmpt2 31936 measvunilem0 32081 ddemeas 32104 |
Copyright terms: Public domain | W3C validator |