![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esum0 | Structured version Visualization version GIF version |
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
Ref | Expression |
---|---|
esum0.k | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
esum0 | ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esum0.k | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | 1 | nfel1 2908 | . . 3 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0e0iccpnf 13485 | . . . 4 ⊢ 0 ∈ (0[,]+∞) | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,]+∞)) |
6 | xrge0cmn 21397 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
7 | cmnmnd 19790 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
9 | vex 3465 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | xrge00 32873 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
11 | 10 | gsumz 18821 | . . . . 5 ⊢ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
12 | 8, 9, 11 | mp2an 690 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0 |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
14 | 2, 1, 3, 5, 13 | esumval 33835 | . 2 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < )) |
15 | fconstmpt 5743 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
16 | 15 | eqcomi 2734 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) |
17 | 0xr 11307 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
18 | 17 | rgenw 3054 | . . . . . . . 8 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* |
19 | eqid 2725 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
20 | 19 | fnmpt 6700 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)) |
21 | 18, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) |
22 | 0elpw 5359 | . . . . . . . . 9 ⊢ ∅ ∈ 𝒫 𝐴 | |
23 | 0fi 9079 | . . . . . . . . 9 ⊢ ∅ ∈ Fin | |
24 | elin 3962 | . . . . . . . . 9 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin)) | |
25 | 22, 23, 24 | mpbir2an 709 | . . . . . . . 8 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
26 | 25 | ne0ii 4339 | . . . . . . 7 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
27 | fconst5 7222 | . . . . . . 7 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})) | |
28 | 21, 26, 27 | mp2an 690 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
29 | 16, 28 | mpbi 229 | . . . . 5 ⊢ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0} |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
31 | 30 | supeq1d 9485 | . . 3 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )) |
32 | xrltso 13169 | . . . 4 ⊢ < Or ℝ* | |
33 | supsn 9511 | . . . 4 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
34 | 32, 17, 33 | mp2an 690 | . . 3 ⊢ sup({0}, ℝ*, < ) = 0 |
35 | 31, 34 | eqtrdi 2781 | . 2 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0) |
36 | 14, 35 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 ≠ wne 2929 ∀wral 3050 Vcvv 3461 ∩ cin 3945 ∅c0 4324 𝒫 cpw 4606 {csn 4632 ↦ cmpt 5235 Or wor 5592 × cxp 5679 ran crn 5682 Fn wfn 6548 (class class class)co 7423 Fincfn 8973 supcsup 9479 0cc0 11154 +∞cpnf 11291 ℝ*cxr 11293 < clt 11294 [,]cicc 13376 ↾s cress 17237 Σg cgsu 17450 ℝ*𝑠cxrs 17510 Mndcmnd 18722 CMndccmn 19773 Σ*cesum 33816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-of 7689 df-om 7876 df-1st 8002 df-2nd 8003 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8856 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-fsupp 9402 df-fi 9450 df-sup 9481 df-inf 9482 df-oi 9549 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-q 12980 df-xadd 13142 df-ioo 13377 df-ioc 13378 df-ico 13379 df-icc 13380 df-fz 13534 df-fzo 13677 df-seq 14017 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-tset 17280 df-ple 17281 df-ds 17283 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-ordt 17511 df-xrs 17512 df-mre 17594 df-mrc 17595 df-acs 17597 df-ps 18586 df-tsr 18587 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-cntz 19306 df-cmn 19775 df-fbas 21332 df-fg 21333 df-top 22879 df-topon 22896 df-topsp 22918 df-bases 22932 df-ntr 23007 df-nei 23085 df-cn 23214 df-haus 23302 df-fil 23833 df-fm 23925 df-flim 23926 df-flf 23927 df-tsms 24114 df-esum 33817 |
This theorem is referenced by: esumpad 33844 esumrnmpt2 33857 measvunilem0 34002 ddemeas 34025 |
Copyright terms: Public domain | W3C validator |