| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrmnf | Structured version Visualization version GIF version | ||
| Description: Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| supxrmnf | ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4107 | . . 3 ⊢ (𝐴 ∪ {-∞}) = ({-∞} ∪ 𝐴) | |
| 2 | 1 | supeq1i 9340 | . 2 ⊢ sup((𝐴 ∪ {-∞}), ℝ*, < ) = sup(({-∞} ∪ 𝐴), ℝ*, < ) |
| 3 | mnfxr 11178 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 4 | snssi 4761 | . . . 4 ⊢ (-∞ ∈ ℝ* → {-∞} ⊆ ℝ*) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝐴 ⊆ ℝ* → {-∞} ⊆ ℝ*) |
| 6 | id 22 | . . 3 ⊢ (𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ*) | |
| 7 | xrltso 13044 | . . . . 5 ⊢ < Or ℝ* | |
| 8 | supsn 9366 | . . . . 5 ⊢ (( < Or ℝ* ∧ -∞ ∈ ℝ*) → sup({-∞}, ℝ*, < ) = -∞) | |
| 9 | 7, 3, 8 | mp2an 692 | . . . 4 ⊢ sup({-∞}, ℝ*, < ) = -∞ |
| 10 | supxrcl 13218 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
| 11 | mnfle 13038 | . . . . 5 ⊢ (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < )) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < )) |
| 13 | 9, 12 | eqbrtrid 5130 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup({-∞}, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) |
| 14 | supxrun 13219 | . . 3 ⊢ (({-∞} ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ∧ sup({-∞}, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) → sup(({-∞} ∪ 𝐴), ℝ*, < ) = sup(𝐴, ℝ*, < )) | |
| 15 | 5, 6, 13, 14 | syl3anc 1373 | . 2 ⊢ (𝐴 ⊆ ℝ* → sup(({-∞} ∪ 𝐴), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| 16 | 2, 15 | eqtrid 2780 | 1 ⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 {csn 4577 class class class wbr 5095 Or wor 5528 supcsup 9333 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 |
| This theorem is referenced by: supxrmnf2 45558 |
| Copyright terms: Public domain | W3C validator |