| Step | Hyp | Ref
| Expression |
| 1 | | bren 8967 |
. . 3
⊢ (ℕ
≈ 𝐴 ↔
∃𝑓 𝑓:ℕ–1-1-onto→𝐴) |
| 2 | | simpll 766 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ) |
| 3 | | f1of 6817 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℕ–1-1-onto→𝐴 → 𝑓:ℕ⟶𝐴) |
| 4 | 3 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓:ℕ⟶𝐴) |
| 5 | 4 | ffvelcdmda 7073 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ∈ 𝐴) |
| 6 | 2, 5 | sseldd 3959 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ∈ ℝ) |
| 7 | 6 | leidd 11801 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ≤ (𝑓‘𝑥)) |
| 8 | | df-br 5120 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ≤ (𝑓‘𝑥) ↔ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ ≤ ) |
| 9 | 7, 8 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ ≤ ) |
| 10 | 6, 6 | opelxpd 5693 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ (ℝ ×
ℝ)) |
| 11 | 9, 10 | elind 4175 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
| 12 | | df-ov 7406 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) I (𝑓‘𝑥)) = ( I ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 13 | | opex 5439 |
. . . . . . . . . . . . 13
⊢
〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ V |
| 14 | | fvi 6954 |
. . . . . . . . . . . . 13
⊢
(〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ V → ( I
‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 |
| 16 | 12, 15 | eqtri 2758 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) I (𝑓‘𝑥)) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 |
| 17 | 16 | mpteq2i 5217 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥))) = (𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 18 | 11, 17 | fmptd 7103 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥))):ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 19 | | nnex 12244 |
. . . . . . . . . . . 12
⊢ ℕ
∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ℕ ∈
V) |
| 21 | 6 | recnd 11261 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ∈ ℂ) |
| 22 | 4 | feqmptd 6946 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓‘𝑥))) |
| 23 | 20, 21, 21, 22, 22 | offval2 7689 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑓 ∘f I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥)))) |
| 24 | 23 | feq1d 6689 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩ (ℝ
× ℝ)) ↔ (𝑥
∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥))):ℕ⟶( ≤ ∩ (ℝ
× ℝ)))) |
| 25 | 18, 24 | mpbird 257 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 26 | | f1ofo 6824 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–1-1-onto→𝐴 → 𝑓:ℕ–onto→𝐴) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓:ℕ–onto→𝐴) |
| 28 | | forn 6792 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–onto→𝐴 → ran 𝑓 = 𝐴) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ran 𝑓 = 𝐴) |
| 30 | 29 | eleq2d 2820 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ 𝐴)) |
| 31 | | f1ofn 6818 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→𝐴 → 𝑓 Fn ℕ) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓 Fn ℕ) |
| 33 | | fvelrnb 6938 |
. . . . . . . . . . . . 13
⊢ (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦)) |
| 35 | 30, 34 | bitr3d 281 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦)) |
| 36 | 23, 17 | eqtrdi 2786 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑓 ∘f I 𝑓) = (𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
| 37 | 36 | fveq1d 6877 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((𝑓 ∘f I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉)‘𝑥)) |
| 38 | | eqid 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℕ ↦
〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = (𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 39 | 38 | fvmpt2 6996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℕ ∧
〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ V) → ((𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉)‘𝑥) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 40 | 13, 39 | mpan2 691 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦
〈(𝑓‘𝑥), (𝑓‘𝑥)〉)‘𝑥) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 41 | 37, 40 | sylan9eq 2790 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓 ∘f I 𝑓)‘𝑥) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 42 | 41 | fveq2d 6879 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (1st
‘((𝑓
∘f I 𝑓)‘𝑥)) = (1st ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
| 43 | | fvex 6888 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑥) ∈ V |
| 44 | 43, 43 | op1st 7994 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = (𝑓‘𝑥) |
| 45 | 42, 44 | eqtrdi 2786 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (1st
‘((𝑓
∘f I 𝑓)‘𝑥)) = (𝑓‘𝑥)) |
| 46 | 45, 7 | eqbrtrd 5141 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥)) |
| 47 | 41 | fveq2d 6879 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (2nd
‘((𝑓
∘f I 𝑓)‘𝑥)) = (2nd ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
| 48 | 43, 43 | op2nd 7995 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = (𝑓‘𝑥) |
| 49 | 47, 48 | eqtrdi 2786 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (2nd
‘((𝑓
∘f I 𝑓)‘𝑥)) = (𝑓‘𝑥)) |
| 50 | 7, 49 | breqtrrd 5147 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))) |
| 51 | 46, 50 | jca 511 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)))) |
| 52 | | breq2 5123 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑥) = 𝑦 → ((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥) ↔ (1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ 𝑦)) |
| 53 | | breq1 5122 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑥) = 𝑦 → ((𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)))) |
| 54 | 52, 53 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑥) = 𝑦 → (((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
| 55 | 51, 54 | syl5ibcom 245 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓‘𝑥) = 𝑦 → ((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
| 56 | 55 | reximdva 3153 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
| 57 | 35, 56 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ 𝐴 → ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
| 58 | 57 | ralrimiv 3131 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)))) |
| 59 | | ovolficc 25419 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ (𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓))
↔ ∀𝑦 ∈
𝐴 ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
| 60 | 25, 59 | syldan 591 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓))
↔ ∀𝑦 ∈
𝐴 ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
| 61 | 58, 60 | mpbird 257 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓))) |
| 62 | | eqid 2735 |
. . . . . . . . 9
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑓 ∘f I 𝑓))) = seq1( + , ((abs ∘ − )
∘ (𝑓
∘f I 𝑓))) |
| 63 | 62 | ovollb2 25440 |
. . . . . . . 8
⊢ (((𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓)))
→ (vol*‘𝐴) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, <
)) |
| 64 | 25, 61, 63 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, <
)) |
| 65 | 21, 21 | opelxpd 5693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ (ℂ ×
ℂ)) |
| 66 | | absf 15354 |
. . . . . . . . . . . . . . . . . . 19
⊢
abs:ℂ⟶ℝ |
| 67 | | subf 11482 |
. . . . . . . . . . . . . . . . . . 19
⊢ −
:(ℂ × ℂ)⟶ℂ |
| 68 | | fco 6729 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs:ℂ⟶ℝ ∧ − :(ℂ ×
ℂ)⟶ℂ) → (abs ∘ − ):(ℂ ×
ℂ)⟶ℝ) |
| 69 | 66, 67, 68 | mp2an 692 |
. . . . . . . . . . . . . . . . . 18
⊢ (abs
∘ − ):(ℂ × ℂ)⟶ℝ |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (abs ∘ −
):(ℂ × ℂ)⟶ℝ) |
| 71 | 70 | feqmptd 6946 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (abs ∘ − )
= (𝑦 ∈ (ℂ
× ℂ) ↦ ((abs ∘ − )‘𝑦))) |
| 72 | | fveq2 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 → ((abs ∘ −
)‘𝑦) = ((abs ∘
− )‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
| 73 | | df-ov 7406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)) = ((abs ∘ −
)‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
| 74 | 72, 73 | eqtr4di 2788 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 → ((abs ∘ −
)‘𝑦) = ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥))) |
| 75 | 65, 36, 71, 74 | fmptco 7118 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((abs ∘ − )
∘ (𝑓
∘f I 𝑓)) =
(𝑥 ∈ ℕ ↦
((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)))) |
| 76 | | cnmet 24708 |
. . . . . . . . . . . . . . . . 17
⊢ (abs
∘ − ) ∈ (Met‘ℂ) |
| 77 | | met0 24280 |
. . . . . . . . . . . . . . . . 17
⊢ (((abs
∘ − ) ∈ (Met‘ℂ) ∧ (𝑓‘𝑥) ∈ ℂ) → ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)) = 0) |
| 78 | 76, 21, 77 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)) = 0) |
| 79 | 78 | mpteq2dva 5214 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥))) = (𝑥 ∈ ℕ ↦ 0)) |
| 80 | 75, 79 | eqtrd 2770 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((abs ∘ − )
∘ (𝑓
∘f I 𝑓)) =
(𝑥 ∈ ℕ ↦
0)) |
| 81 | | fconstmpt 5716 |
. . . . . . . . . . . . . 14
⊢ (ℕ
× {0}) = (𝑥 ∈
ℕ ↦ 0) |
| 82 | 80, 81 | eqtr4di 2788 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((abs ∘ − )
∘ (𝑓
∘f I 𝑓)) =
(ℕ × {0})) |
| 83 | 82 | seqeq3d 14025 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → seq1( + , ((abs ∘
− ) ∘ (𝑓
∘f I 𝑓)))
= seq1( + , (ℕ × {0}))) |
| 84 | | 1z 12620 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
| 85 | | nnuz 12893 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
| 86 | 85 | ser0f 14071 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℤ → seq1( + , (ℕ × {0})) = (ℕ ×
{0})) |
| 87 | 84, 86 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ seq1( + ,
(ℕ × {0})) = (ℕ × {0}) |
| 88 | 83, 87 | eqtrdi 2786 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → seq1( + , ((abs ∘
− ) ∘ (𝑓
∘f I 𝑓)))
= (ℕ × {0})) |
| 89 | 88 | rneqd 5918 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))) = ran (ℕ ×
{0})) |
| 90 | | 1nn 12249 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 91 | | ne0i 4316 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
| 92 | | rnxp 6159 |
. . . . . . . . . . 11
⊢ (ℕ
≠ ∅ → ran (ℕ × {0}) = {0}) |
| 93 | 90, 91, 92 | mp2b 10 |
. . . . . . . . . 10
⊢ ran
(ℕ × {0}) = {0} |
| 94 | 89, 93 | eqtrdi 2786 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))) = {0}) |
| 95 | 94 | supeq1d 9456 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, < ) = sup({0},
ℝ*, < )) |
| 96 | | xrltso 13155 |
. . . . . . . . 9
⊢ < Or
ℝ* |
| 97 | | 0xr 11280 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 98 | | supsn 9483 |
. . . . . . . . 9
⊢ (( <
Or ℝ* ∧ 0 ∈ ℝ*) → sup({0},
ℝ*, < ) = 0) |
| 99 | 96, 97, 98 | mp2an 692 |
. . . . . . . 8
⊢ sup({0},
ℝ*, < ) = 0 |
| 100 | 95, 99 | eqtrdi 2786 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, < ) =
0) |
| 101 | 64, 100 | breqtrd 5145 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) ≤ 0) |
| 102 | | ovolge0 25432 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ → 0 ≤
(vol*‘𝐴)) |
| 103 | 102 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 0 ≤
(vol*‘𝐴)) |
| 104 | | ovolcl 25429 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
| 105 | 104 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) ∈
ℝ*) |
| 106 | | xrletri3 13168 |
. . . . . . 7
⊢
(((vol*‘𝐴)
∈ ℝ* ∧ 0 ∈ ℝ*) →
((vol*‘𝐴) = 0 ↔
((vol*‘𝐴) ≤ 0
∧ 0 ≤ (vol*‘𝐴)))) |
| 107 | 105, 97, 106 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤
(vol*‘𝐴)))) |
| 108 | 101, 103,
107 | mpbir2and 713 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) = 0) |
| 109 | 108 | ex 412 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto→𝐴 → (vol*‘𝐴) = 0)) |
| 110 | 109 | exlimdv 1933 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑓 𝑓:ℕ–1-1-onto→𝐴 → (vol*‘𝐴) = 0)) |
| 111 | 1, 110 | biimtrid 242 |
. 2
⊢ (𝐴 ⊆ ℝ → (ℕ
≈ 𝐴 →
(vol*‘𝐴) =
0)) |
| 112 | | ensym 9015 |
. 2
⊢ (𝐴 ≈ ℕ → ℕ
≈ 𝐴) |
| 113 | 111, 112 | impel 505 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) →
(vol*‘𝐴) =
0) |