MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb Structured version   Visualization version   GIF version

Theorem ovolctb 25389
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolctb ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8882 . . 3 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
2 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ)
3 f1of 6764 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
43adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶𝐴)
54ffvelcdmda 7018 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ 𝐴)
62, 5sseldd 3936 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℝ)
76leidd 11686 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (𝑓𝑥))
8 df-br 5093 . . . . . . . . . . . 12 ((𝑓𝑥) ≤ (𝑓𝑥) ↔ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
97, 8sylib 218 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
106, 6opelxpd 5658 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℝ × ℝ))
119, 10elind 4151 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
12 df-ov 7352 . . . . . . . . . . . 12 ((𝑓𝑥) I (𝑓𝑥)) = ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
13 opex 5407 . . . . . . . . . . . . 13 ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V
14 fvi 6899 . . . . . . . . . . . . 13 (⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V → ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1513, 14ax-mp 5 . . . . . . . . . . . 12 ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1612, 15eqtri 2752 . . . . . . . . . . 11 ((𝑓𝑥) I (𝑓𝑥)) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1716mpteq2i 5188 . . . . . . . . . 10 (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1811, 17fmptd 7048 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
19 nnex 12134 . . . . . . . . . . . 12 ℕ ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ℕ ∈ V)
216recnd 11143 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℂ)
224feqmptd 6891 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓𝑥)))
2320, 21, 21, 22, 22offval2 7633 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))))
2423feq1d 6634 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ↔ (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2518, 24mpbird 257 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
26 f1ofo 6771 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
2726adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–onto𝐴)
28 forn 6739 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
2927, 28syl 17 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
3029eleq2d 2814 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓𝑦𝐴))
31 f1ofn 6765 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝐴𝑓 Fn ℕ)
3231adantl 481 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 Fn ℕ)
33 fvelrnb 6883 . . . . . . . . . . . . 13 (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3432, 33syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3530, 34bitr3d 281 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3623, 17eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩))
3736fveq1d 6824 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥))
38 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
3938fvmpt2 6941 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V) → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4013, 39mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4137, 40sylan9eq 2784 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓f I 𝑓)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4241fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
43 fvex 6835 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
4443, 43op1st 7932 . . . . . . . . . . . . . . . 16 (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4542, 44eqtrdi 2780 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
4645, 7eqbrtrd 5114 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥))
4741fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
4843, 43op2nd 7933 . . . . . . . . . . . . . . . 16 (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4947, 48eqtrdi 2780 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
507, 49breqtrrd 5120 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))
5146, 50jca 511 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
52 breq2 5096 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ↔ (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦))
53 breq1 5095 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
5452, 53anbi12d 632 . . . . . . . . . . . . 13 ((𝑓𝑥) = 𝑦 → (((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5551, 54syl5ibcom 245 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5655reximdva 3142 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5735, 56sylbid 240 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5857ralrimiv 3120 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
59 ovolficc 25367 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6025, 59syldan 591 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6158, 60mpbird 257 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ran ([,] ∘ (𝑓f I 𝑓)))
62 eqid 2729 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓)))
6362ovollb2 25388 . . . . . . . 8 (((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ (𝑓f I 𝑓))) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6425, 61, 63syl2anc 584 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6521, 21opelxpd 5658 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℂ × ℂ))
66 absf 15245 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
67 subf 11365 . . . . . . . . . . . . . . . . . . 19 − :(ℂ × ℂ)⟶ℂ
68 fco 6676 . . . . . . . . . . . . . . . . . . 19 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
6966, 67, 68mp2an 692 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7069a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7170feqmptd 6891 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ) = (𝑦 ∈ (ℂ × ℂ) ↦ ((abs ∘ − )‘𝑦)))
72 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
73 df-ov 7352 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
7472, 73eqtr4di 2782 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)))
7565, 36, 71, 74fmptco 7063 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))))
76 cnmet 24657 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
77 met0 24229 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (𝑓𝑥) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7876, 21, 77sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7978mpteq2dva 5185 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))) = (𝑥 ∈ ℕ ↦ 0))
8075, 79eqtrd 2764 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ 0))
81 fconstmpt 5681 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑥 ∈ ℕ ↦ 0)
8280, 81eqtr4di 2782 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (ℕ × {0}))
8382seqeq3d 13916 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , (ℕ × {0})))
84 1z 12505 . . . . . . . . . . . . 13 1 ∈ ℤ
85 nnuz 12778 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8685ser0f 13962 . . . . . . . . . . . . 13 (1 ∈ ℤ → seq1( + , (ℕ × {0})) = (ℕ × {0}))
8784, 86ax-mp 5 . . . . . . . . . . . 12 seq1( + , (ℕ × {0})) = (ℕ × {0})
8883, 87eqtrdi 2780 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = (ℕ × {0}))
8988rneqd 5880 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = ran (ℕ × {0}))
90 1nn 12139 . . . . . . . . . . 11 1 ∈ ℕ
91 ne0i 4292 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
92 rnxp 6119 . . . . . . . . . . 11 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
9390, 91, 92mp2b 10 . . . . . . . . . 10 ran (ℕ × {0}) = {0}
9489, 93eqtrdi 2780 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = {0})
9594supeq1d 9336 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = sup({0}, ℝ*, < ))
96 xrltso 13043 . . . . . . . . 9 < Or ℝ*
97 0xr 11162 . . . . . . . . 9 0 ∈ ℝ*
98 supsn 9363 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
9996, 97, 98mp2an 692 . . . . . . . 8 sup({0}, ℝ*, < ) = 0
10095, 99eqtrdi 2780 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = 0)
10164, 100breqtrd 5118 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ 0)
102 ovolge0 25380 . . . . . . 7 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
103102adantr 480 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 0 ≤ (vol*‘𝐴))
104 ovolcl 25377 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
105104adantr 480 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ∈ ℝ*)
106 xrletri3 13056 . . . . . . 7 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
107105, 97, 106sylancl 586 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
108101, 103, 107mpbir2and 713 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) = 0)
109108ex 412 . . . 4 (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
110109exlimdv 1933 . . 3 (𝐴 ⊆ ℝ → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
1111, 110biimtrid 242 . 2 (𝐴 ⊆ ℝ → (ℕ ≈ 𝐴 → (vol*‘𝐴) = 0))
112 ensym 8928 . 2 (𝐴 ≈ ℕ → ℕ ≈ 𝐴)
113111, 112impel 505 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903  c0 4284  {csn 4577  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173   I cid 5513   Or wor 5526   × cxp 5617  ran crn 5620  ccom 5623   Fn wfn 6477  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  f cof 7611  1st c1st 7922  2nd c2nd 7923  cen 8869  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cn 12128  cz 12471  [,]cicc 13251  seqcseq 13908  abscabs 15141  Metcmet 21247  vol*covol 25361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363
This theorem is referenced by:  ovolq  25390  ovolctb2  25391  ovoliunnfl  37642
  Copyright terms: Public domain W3C validator