MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb Structured version   Visualization version   GIF version

Theorem ovolctb 24654
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolctb ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8743 . . 3 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
2 simpll 764 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ)
3 f1of 6716 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
43adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶𝐴)
54ffvelrnda 6961 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ 𝐴)
62, 5sseldd 3922 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℝ)
76leidd 11541 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (𝑓𝑥))
8 df-br 5075 . . . . . . . . . . . 12 ((𝑓𝑥) ≤ (𝑓𝑥) ↔ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
97, 8sylib 217 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
106, 6opelxpd 5627 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℝ × ℝ))
119, 10elind 4128 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
12 df-ov 7278 . . . . . . . . . . . 12 ((𝑓𝑥) I (𝑓𝑥)) = ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
13 opex 5379 . . . . . . . . . . . . 13 ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V
14 fvi 6844 . . . . . . . . . . . . 13 (⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V → ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1513, 14ax-mp 5 . . . . . . . . . . . 12 ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1612, 15eqtri 2766 . . . . . . . . . . 11 ((𝑓𝑥) I (𝑓𝑥)) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1716mpteq2i 5179 . . . . . . . . . 10 (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1811, 17fmptd 6988 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
19 nnex 11979 . . . . . . . . . . . 12 ℕ ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ℕ ∈ V)
216recnd 11003 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℂ)
224feqmptd 6837 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓𝑥)))
2320, 21, 21, 22, 22offval2 7553 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))))
2423feq1d 6585 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ↔ (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2518, 24mpbird 256 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
26 f1ofo 6723 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
2726adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–onto𝐴)
28 forn 6691 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
2927, 28syl 17 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
3029eleq2d 2824 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓𝑦𝐴))
31 f1ofn 6717 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝐴𝑓 Fn ℕ)
3231adantl 482 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 Fn ℕ)
33 fvelrnb 6830 . . . . . . . . . . . . 13 (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3432, 33syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3530, 34bitr3d 280 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3623, 17eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩))
3736fveq1d 6776 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥))
38 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
3938fvmpt2 6886 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V) → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4013, 39mpan2 688 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4137, 40sylan9eq 2798 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓f I 𝑓)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4241fveq2d 6778 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
43 fvex 6787 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
4443, 43op1st 7839 . . . . . . . . . . . . . . . 16 (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4542, 44eqtrdi 2794 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
4645, 7eqbrtrd 5096 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥))
4741fveq2d 6778 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
4843, 43op2nd 7840 . . . . . . . . . . . . . . . 16 (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4947, 48eqtrdi 2794 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
507, 49breqtrrd 5102 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))
5146, 50jca 512 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
52 breq2 5078 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ↔ (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦))
53 breq1 5077 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
5452, 53anbi12d 631 . . . . . . . . . . . . 13 ((𝑓𝑥) = 𝑦 → (((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5551, 54syl5ibcom 244 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5655reximdva 3203 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5735, 56sylbid 239 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5857ralrimiv 3102 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
59 ovolficc 24632 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6025, 59syldan 591 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6158, 60mpbird 256 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ran ([,] ∘ (𝑓f I 𝑓)))
62 eqid 2738 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓)))
6362ovollb2 24653 . . . . . . . 8 (((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ (𝑓f I 𝑓))) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6425, 61, 63syl2anc 584 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6521, 21opelxpd 5627 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℂ × ℂ))
66 absf 15049 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
67 subf 11223 . . . . . . . . . . . . . . . . . . 19 − :(ℂ × ℂ)⟶ℂ
68 fco 6624 . . . . . . . . . . . . . . . . . . 19 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
6966, 67, 68mp2an 689 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7069a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7170feqmptd 6837 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ) = (𝑦 ∈ (ℂ × ℂ) ↦ ((abs ∘ − )‘𝑦)))
72 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
73 df-ov 7278 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
7472, 73eqtr4di 2796 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)))
7565, 36, 71, 74fmptco 7001 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))))
76 cnmet 23935 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
77 met0 23496 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (𝑓𝑥) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7876, 21, 77sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7978mpteq2dva 5174 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))) = (𝑥 ∈ ℕ ↦ 0))
8075, 79eqtrd 2778 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ 0))
81 fconstmpt 5649 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑥 ∈ ℕ ↦ 0)
8280, 81eqtr4di 2796 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (ℕ × {0}))
8382seqeq3d 13729 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , (ℕ × {0})))
84 1z 12350 . . . . . . . . . . . . 13 1 ∈ ℤ
85 nnuz 12621 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8685ser0f 13776 . . . . . . . . . . . . 13 (1 ∈ ℤ → seq1( + , (ℕ × {0})) = (ℕ × {0}))
8784, 86ax-mp 5 . . . . . . . . . . . 12 seq1( + , (ℕ × {0})) = (ℕ × {0})
8883, 87eqtrdi 2794 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = (ℕ × {0}))
8988rneqd 5847 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = ran (ℕ × {0}))
90 1nn 11984 . . . . . . . . . . 11 1 ∈ ℕ
91 ne0i 4268 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
92 rnxp 6073 . . . . . . . . . . 11 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
9390, 91, 92mp2b 10 . . . . . . . . . 10 ran (ℕ × {0}) = {0}
9489, 93eqtrdi 2794 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = {0})
9594supeq1d 9205 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = sup({0}, ℝ*, < ))
96 xrltso 12875 . . . . . . . . 9 < Or ℝ*
97 0xr 11022 . . . . . . . . 9 0 ∈ ℝ*
98 supsn 9231 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
9996, 97, 98mp2an 689 . . . . . . . 8 sup({0}, ℝ*, < ) = 0
10095, 99eqtrdi 2794 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = 0)
10164, 100breqtrd 5100 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ 0)
102 ovolge0 24645 . . . . . . 7 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
103102adantr 481 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 0 ≤ (vol*‘𝐴))
104 ovolcl 24642 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
105104adantr 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ∈ ℝ*)
106 xrletri3 12888 . . . . . . 7 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
107105, 97, 106sylancl 586 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
108101, 103, 107mpbir2and 710 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) = 0)
109108ex 413 . . . 4 (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
110109exlimdv 1936 . . 3 (𝐴 ⊆ ℝ → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
1111, 110syl5bi 241 . 2 (𝐴 ⊆ ℝ → (ℕ ≈ 𝐴 → (vol*‘𝐴) = 0))
112 ensym 8789 . 2 (𝐴 ≈ ℕ → ℕ ≈ 𝐴)
113111, 112impel 506 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  cmpt 5157   I cid 5488   Or wor 5502   × cxp 5587  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  f cof 7531  1st c1st 7829  2nd c2nd 7830  cen 8730  supcsup 9199  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cn 11973  cz 12319  [,]cicc 13082  seqcseq 13721  abscabs 14945  Metcmet 20583  vol*covol 24626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628
This theorem is referenced by:  ovolq  24655  ovolctb2  24656  ovoliunnfl  35819
  Copyright terms: Public domain W3C validator