MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb Structured version   Visualization version   GIF version

Theorem ovolctb 25441
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolctb ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8967 . . 3 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
2 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ)
3 f1of 6817 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
43adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶𝐴)
54ffvelcdmda 7073 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ 𝐴)
62, 5sseldd 3959 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℝ)
76leidd 11801 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (𝑓𝑥))
8 df-br 5120 . . . . . . . . . . . 12 ((𝑓𝑥) ≤ (𝑓𝑥) ↔ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
97, 8sylib 218 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
106, 6opelxpd 5693 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℝ × ℝ))
119, 10elind 4175 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
12 df-ov 7406 . . . . . . . . . . . 12 ((𝑓𝑥) I (𝑓𝑥)) = ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
13 opex 5439 . . . . . . . . . . . . 13 ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V
14 fvi 6954 . . . . . . . . . . . . 13 (⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V → ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1513, 14ax-mp 5 . . . . . . . . . . . 12 ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1612, 15eqtri 2758 . . . . . . . . . . 11 ((𝑓𝑥) I (𝑓𝑥)) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1716mpteq2i 5217 . . . . . . . . . 10 (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1811, 17fmptd 7103 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
19 nnex 12244 . . . . . . . . . . . 12 ℕ ∈ V
2019a1i 11 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ℕ ∈ V)
216recnd 11261 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℂ)
224feqmptd 6946 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓𝑥)))
2320, 21, 21, 22, 22offval2 7689 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))))
2423feq1d 6689 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ↔ (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2518, 24mpbird 257 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
26 f1ofo 6824 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
2726adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–onto𝐴)
28 forn 6792 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
2927, 28syl 17 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
3029eleq2d 2820 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓𝑦𝐴))
31 f1ofn 6818 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto𝐴𝑓 Fn ℕ)
3231adantl 481 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 Fn ℕ)
33 fvelrnb 6938 . . . . . . . . . . . . 13 (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3432, 33syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3530, 34bitr3d 281 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3623, 17eqtrdi 2786 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓f I 𝑓) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩))
3736fveq1d 6877 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓f I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥))
38 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
3938fvmpt2 6996 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V) → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4013, 39mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4137, 40sylan9eq 2790 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓f I 𝑓)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4241fveq2d 6879 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
43 fvex 6888 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
4443, 43op1st 7994 . . . . . . . . . . . . . . . 16 (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4542, 44eqtrdi 2786 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
4645, 7eqbrtrd 5141 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥))
4741fveq2d 6879 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
4843, 43op2nd 7995 . . . . . . . . . . . . . . . 16 (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4947, 48eqtrdi 2786 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓f I 𝑓)‘𝑥)) = (𝑓𝑥))
507, 49breqtrrd 5147 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))
5146, 50jca 511 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
52 breq2 5123 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ↔ (1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦))
53 breq1 5122 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → ((𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
5452, 53anbi12d 632 . . . . . . . . . . . . 13 ((𝑓𝑥) = 𝑦 → (((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5551, 54syl5ibcom 245 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5655reximdva 3153 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5735, 56sylbid 240 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
5857ralrimiv 3131 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥))))
59 ovolficc 25419 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6025, 59syldan 591 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝐴 ran ([,] ∘ (𝑓f I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓f I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓f I 𝑓)‘𝑥)))))
6158, 60mpbird 257 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ran ([,] ∘ (𝑓f I 𝑓)))
62 eqid 2735 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓)))
6362ovollb2 25440 . . . . . . . 8 (((𝑓f I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ (𝑓f I 𝑓))) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6425, 61, 63syl2anc 584 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ))
6521, 21opelxpd 5693 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℂ × ℂ))
66 absf 15354 . . . . . . . . . . . . . . . . . . 19 abs:ℂ⟶ℝ
67 subf 11482 . . . . . . . . . . . . . . . . . . 19 − :(ℂ × ℂ)⟶ℂ
68 fco 6729 . . . . . . . . . . . . . . . . . . 19 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
6966, 67, 68mp2an 692 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7069a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7170feqmptd 6946 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ) = (𝑦 ∈ (ℂ × ℂ) ↦ ((abs ∘ − )‘𝑦)))
72 fveq2 6875 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
73 df-ov 7406 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
7472, 73eqtr4di 2788 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)))
7565, 36, 71, 74fmptco 7118 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))))
76 cnmet 24708 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (Met‘ℂ)
77 met0 24280 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (𝑓𝑥) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7876, 21, 77sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
7978mpteq2dva 5214 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))) = (𝑥 ∈ ℕ ↦ 0))
8075, 79eqtrd 2770 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (𝑥 ∈ ℕ ↦ 0))
81 fconstmpt 5716 . . . . . . . . . . . . . 14 (ℕ × {0}) = (𝑥 ∈ ℕ ↦ 0)
8280, 81eqtr4di 2788 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓f I 𝑓)) = (ℕ × {0}))
8382seqeq3d 14025 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = seq1( + , (ℕ × {0})))
84 1z 12620 . . . . . . . . . . . . 13 1 ∈ ℤ
85 nnuz 12893 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
8685ser0f 14071 . . . . . . . . . . . . 13 (1 ∈ ℤ → seq1( + , (ℕ × {0})) = (ℕ × {0}))
8784, 86ax-mp 5 . . . . . . . . . . . 12 seq1( + , (ℕ × {0})) = (ℕ × {0})
8883, 87eqtrdi 2786 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = (ℕ × {0}))
8988rneqd 5918 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = ran (ℕ × {0}))
90 1nn 12249 . . . . . . . . . . 11 1 ∈ ℕ
91 ne0i 4316 . . . . . . . . . . 11 (1 ∈ ℕ → ℕ ≠ ∅)
92 rnxp 6159 . . . . . . . . . . 11 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
9390, 91, 92mp2b 10 . . . . . . . . . 10 ran (ℕ × {0}) = {0}
9489, 93eqtrdi 2786 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))) = {0})
9594supeq1d 9456 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = sup({0}, ℝ*, < ))
96 xrltso 13155 . . . . . . . . 9 < Or ℝ*
97 0xr 11280 . . . . . . . . 9 0 ∈ ℝ*
98 supsn 9483 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
9996, 97, 98mp2an 692 . . . . . . . 8 sup({0}, ℝ*, < ) = 0
10095, 99eqtrdi 2786 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓f I 𝑓))), ℝ*, < ) = 0)
10164, 100breqtrd 5145 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ 0)
102 ovolge0 25432 . . . . . . 7 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
103102adantr 480 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 0 ≤ (vol*‘𝐴))
104 ovolcl 25429 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
105104adantr 480 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ∈ ℝ*)
106 xrletri3 13168 . . . . . . 7 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
107105, 97, 106sylancl 586 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
108101, 103, 107mpbir2and 713 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) = 0)
109108ex 412 . . . 4 (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
110109exlimdv 1933 . . 3 (𝐴 ⊆ ℝ → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
1111, 110biimtrid 242 . 2 (𝐴 ⊆ ℝ → (ℕ ≈ 𝐴 → (vol*‘𝐴) = 0))
112 ensym 9015 . 2 (𝐴 ≈ ℕ → ℕ ≈ 𝐴)
113111, 112impel 505 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   class class class wbr 5119  cmpt 5201   I cid 5547   Or wor 5560   × cxp 5652  ran crn 5655  ccom 5658   Fn wfn 6525  wf 6526  ontowfo 6528  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  f cof 7667  1st c1st 7984  2nd c2nd 7985  cen 8954  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  *cxr 11266   < clt 11267  cle 11268  cmin 11464  cn 12238  cz 12586  [,]cicc 13363  seqcseq 14017  abscabs 15251  Metcmet 21299  vol*covol 25413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xadd 13127  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-xmet 21306  df-met 21307  df-ovol 25415
This theorem is referenced by:  ovolq  25442  ovolctb2  25443  ovoliunnfl  37632
  Copyright terms: Public domain W3C validator