Step | Hyp | Ref
| Expression |
1 | | bren 8701 |
. . 3
⊢ (ℕ
≈ 𝐴 ↔
∃𝑓 𝑓:ℕ–1-1-onto→𝐴) |
2 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ) |
3 | | f1of 6700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℕ–1-1-onto→𝐴 → 𝑓:ℕ⟶𝐴) |
4 | 3 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓:ℕ⟶𝐴) |
5 | 4 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ∈ 𝐴) |
6 | 2, 5 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ∈ ℝ) |
7 | 6 | leidd 11471 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ≤ (𝑓‘𝑥)) |
8 | | df-br 5071 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ≤ (𝑓‘𝑥) ↔ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ ≤ ) |
9 | 7, 8 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ ≤ ) |
10 | 6, 6 | opelxpd 5618 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ (ℝ ×
ℝ)) |
11 | 9, 10 | elind 4124 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
12 | | df-ov 7258 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) I (𝑓‘𝑥)) = ( I ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
13 | | opex 5373 |
. . . . . . . . . . . . 13
⊢
〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ V |
14 | | fvi 6826 |
. . . . . . . . . . . . 13
⊢
(〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ V → ( I
‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 |
16 | 12, 15 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) I (𝑓‘𝑥)) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 |
17 | 16 | mpteq2i 5175 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥))) = (𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
18 | 11, 17 | fmptd 6970 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥))):ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
19 | | nnex 11909 |
. . . . . . . . . . . 12
⊢ ℕ
∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ℕ ∈
V) |
21 | 6 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ∈ ℂ) |
22 | 4 | feqmptd 6819 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓‘𝑥))) |
23 | 20, 21, 21, 22, 22 | offval2 7531 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑓 ∘f I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥)))) |
24 | 23 | feq1d 6569 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩ (ℝ
× ℝ)) ↔ (𝑥
∈ ℕ ↦ ((𝑓‘𝑥) I (𝑓‘𝑥))):ℕ⟶( ≤ ∩ (ℝ
× ℝ)))) |
25 | 18, 24 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
26 | | f1ofo 6707 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–1-1-onto→𝐴 → 𝑓:ℕ–onto→𝐴) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓:ℕ–onto→𝐴) |
28 | | forn 6675 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–onto→𝐴 → ran 𝑓 = 𝐴) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ran 𝑓 = 𝐴) |
30 | 29 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ 𝐴)) |
31 | | f1ofn 6701 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→𝐴 → 𝑓 Fn ℕ) |
32 | 31 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝑓 Fn ℕ) |
33 | | fvelrnb 6812 |
. . . . . . . . . . . . 13
⊢ (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦)) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦)) |
35 | 30, 34 | bitr3d 280 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦)) |
36 | 23, 17 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑓 ∘f I 𝑓) = (𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
37 | 36 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((𝑓 ∘f I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉)‘𝑥)) |
38 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℕ ↦
〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = (𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
39 | 38 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℕ ∧
〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ V) → ((𝑥 ∈ ℕ ↦ 〈(𝑓‘𝑥), (𝑓‘𝑥)〉)‘𝑥) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
40 | 13, 39 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦
〈(𝑓‘𝑥), (𝑓‘𝑥)〉)‘𝑥) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
41 | 37, 40 | sylan9eq 2799 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓 ∘f I 𝑓)‘𝑥) = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
42 | 41 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (1st
‘((𝑓
∘f I 𝑓)‘𝑥)) = (1st ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
43 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑥) ∈ V |
44 | 43, 43 | op1st 7812 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = (𝑓‘𝑥) |
45 | 42, 44 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (1st
‘((𝑓
∘f I 𝑓)‘𝑥)) = (𝑓‘𝑥)) |
46 | 45, 7 | eqbrtrd 5092 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥)) |
47 | 41 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (2nd
‘((𝑓
∘f I 𝑓)‘𝑥)) = (2nd ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
48 | 43, 43 | op2nd 7813 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) = (𝑓‘𝑥) |
49 | 47, 48 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (2nd
‘((𝑓
∘f I 𝑓)‘𝑥)) = (𝑓‘𝑥)) |
50 | 7, 49 | breqtrrd 5098 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))) |
51 | 46, 50 | jca 511 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)))) |
52 | | breq2 5074 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑥) = 𝑦 → ((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥) ↔ (1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ 𝑦)) |
53 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑥) = 𝑦 → ((𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)))) |
54 | 52, 53 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑥) = 𝑦 → (((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
55 | 51, 54 | syl5ibcom 244 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓‘𝑥) = 𝑦 → ((1st ‘((𝑓 ∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
56 | 55 | reximdva 3202 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (∃𝑥 ∈ ℕ (𝑓‘𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
57 | 35, 56 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑦 ∈ 𝐴 → ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
58 | 57 | ralrimiv 3106 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥)))) |
59 | | ovolficc 24537 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ (𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓))
↔ ∀𝑦 ∈
𝐴 ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
60 | 25, 59 | syldan 590 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓))
↔ ∀𝑦 ∈
𝐴 ∃𝑥 ∈ ℕ ((1st
‘((𝑓
∘f I 𝑓)‘𝑥)) ≤ 𝑦 ∧ 𝑦 ≤ (2nd ‘((𝑓 ∘f I 𝑓)‘𝑥))))) |
61 | 58, 60 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓))) |
62 | | eqid 2738 |
. . . . . . . . 9
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑓 ∘f I 𝑓))) = seq1( + , ((abs ∘ − )
∘ (𝑓
∘f I 𝑓))) |
63 | 62 | ovollb2 24558 |
. . . . . . . 8
⊢ (((𝑓 ∘f I 𝑓):ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran
([,] ∘ (𝑓
∘f I 𝑓)))
→ (vol*‘𝐴) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, <
)) |
64 | 25, 61, 63 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, <
)) |
65 | 21, 21 | opelxpd 5618 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 ∈ (ℂ ×
ℂ)) |
66 | | absf 14977 |
. . . . . . . . . . . . . . . . . . 19
⊢
abs:ℂ⟶ℝ |
67 | | subf 11153 |
. . . . . . . . . . . . . . . . . . 19
⊢ −
:(ℂ × ℂ)⟶ℂ |
68 | | fco 6608 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs:ℂ⟶ℝ ∧ − :(ℂ ×
ℂ)⟶ℂ) → (abs ∘ − ):(ℂ ×
ℂ)⟶ℝ) |
69 | 66, 67, 68 | mp2an 688 |
. . . . . . . . . . . . . . . . . 18
⊢ (abs
∘ − ):(ℂ × ℂ)⟶ℝ |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (abs ∘ −
):(ℂ × ℂ)⟶ℝ) |
71 | 70 | feqmptd 6819 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (abs ∘ − )
= (𝑦 ∈ (ℂ
× ℂ) ↦ ((abs ∘ − )‘𝑦))) |
72 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 → ((abs ∘ −
)‘𝑦) = ((abs ∘
− )‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉)) |
73 | | df-ov 7258 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)) = ((abs ∘ −
)‘〈(𝑓‘𝑥), (𝑓‘𝑥)〉) |
74 | 72, 73 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈(𝑓‘𝑥), (𝑓‘𝑥)〉 → ((abs ∘ −
)‘𝑦) = ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥))) |
75 | 65, 36, 71, 74 | fmptco 6983 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((abs ∘ − )
∘ (𝑓
∘f I 𝑓)) =
(𝑥 ∈ ℕ ↦
((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)))) |
76 | | cnmet 23841 |
. . . . . . . . . . . . . . . . 17
⊢ (abs
∘ − ) ∈ (Met‘ℂ) |
77 | | met0 23404 |
. . . . . . . . . . . . . . . . 17
⊢ (((abs
∘ − ) ∈ (Met‘ℂ) ∧ (𝑓‘𝑥) ∈ ℂ) → ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)) = 0) |
78 | 76, 21, 77 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥)) = 0) |
79 | 78 | mpteq2dva 5170 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓‘𝑥)(abs ∘ − )(𝑓‘𝑥))) = (𝑥 ∈ ℕ ↦ 0)) |
80 | 75, 79 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((abs ∘ − )
∘ (𝑓
∘f I 𝑓)) =
(𝑥 ∈ ℕ ↦
0)) |
81 | | fconstmpt 5640 |
. . . . . . . . . . . . . 14
⊢ (ℕ
× {0}) = (𝑥 ∈
ℕ ↦ 0) |
82 | 80, 81 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((abs ∘ − )
∘ (𝑓
∘f I 𝑓)) =
(ℕ × {0})) |
83 | 82 | seqeq3d 13657 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → seq1( + , ((abs ∘
− ) ∘ (𝑓
∘f I 𝑓)))
= seq1( + , (ℕ × {0}))) |
84 | | 1z 12280 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
85 | | nnuz 12550 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
86 | 85 | ser0f 13704 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℤ → seq1( + , (ℕ × {0})) = (ℕ ×
{0})) |
87 | 84, 86 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ seq1( + ,
(ℕ × {0})) = (ℕ × {0}) |
88 | 83, 87 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → seq1( + , ((abs ∘
− ) ∘ (𝑓
∘f I 𝑓)))
= (ℕ × {0})) |
89 | 88 | rneqd 5836 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))) = ran (ℕ ×
{0})) |
90 | | 1nn 11914 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
91 | | ne0i 4265 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
92 | | rnxp 6062 |
. . . . . . . . . . 11
⊢ (ℕ
≠ ∅ → ran (ℕ × {0}) = {0}) |
93 | 90, 91, 92 | mp2b 10 |
. . . . . . . . . 10
⊢ ran
(ℕ × {0}) = {0} |
94 | 89, 93 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))) = {0}) |
95 | 94 | supeq1d 9135 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, < ) = sup({0},
ℝ*, < )) |
96 | | xrltso 12804 |
. . . . . . . . 9
⊢ < Or
ℝ* |
97 | | 0xr 10953 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
98 | | supsn 9161 |
. . . . . . . . 9
⊢ (( <
Or ℝ* ∧ 0 ∈ ℝ*) → sup({0},
ℝ*, < ) = 0) |
99 | 96, 97, 98 | mp2an 688 |
. . . . . . . 8
⊢ sup({0},
ℝ*, < ) = 0 |
100 | 95, 99 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑓 ∘f I 𝑓))), ℝ*, < ) =
0) |
101 | 64, 100 | breqtrd 5096 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) ≤ 0) |
102 | | ovolge0 24550 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ → 0 ≤
(vol*‘𝐴)) |
103 | 102 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → 0 ≤
(vol*‘𝐴)) |
104 | | ovolcl 24547 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
105 | 104 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) ∈
ℝ*) |
106 | | xrletri3 12817 |
. . . . . . 7
⊢
(((vol*‘𝐴)
∈ ℝ* ∧ 0 ∈ ℝ*) →
((vol*‘𝐴) = 0 ↔
((vol*‘𝐴) ≤ 0
∧ 0 ≤ (vol*‘𝐴)))) |
107 | 105, 97, 106 | sylancl 585 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤
(vol*‘𝐴)))) |
108 | 101, 103,
107 | mpbir2and 709 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto→𝐴) → (vol*‘𝐴) = 0) |
109 | 108 | ex 412 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto→𝐴 → (vol*‘𝐴) = 0)) |
110 | 109 | exlimdv 1937 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑓 𝑓:ℕ–1-1-onto→𝐴 → (vol*‘𝐴) = 0)) |
111 | 1, 110 | syl5bi 241 |
. 2
⊢ (𝐴 ⊆ ℝ → (ℕ
≈ 𝐴 →
(vol*‘𝐴) =
0)) |
112 | | ensym 8744 |
. 2
⊢ (𝐴 ≈ ℕ → ℕ
≈ 𝐴) |
113 | 111, 112 | impel 505 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) →
(vol*‘𝐴) =
0) |