MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz Structured version   Visualization version   GIF version

Theorem ramz 16654
Description: The Ramsey number when 𝐹 is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz ((𝑀 ∈ ℕ0𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0)

Proof of Theorem ramz
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12165 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 n0 4277 . . . . . 6 (𝑅 ≠ ∅ ↔ ∃𝑐 𝑐𝑅)
3 simpll 763 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑀 ∈ ℕ)
4 simplr 765 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑅𝑉)
5 0nn0 12178 . . . . . . . . . . 11 0 ∈ ℕ0
65fconst6 6648 . . . . . . . . . 10 (𝑅 × {0}):𝑅⟶ℕ0
76a1i 11 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → (𝑅 × {0}):𝑅⟶ℕ0)
8 simpr 484 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑐𝑅)
9 fvconst2g 7059 . . . . . . . . . 10 ((0 ∈ ℕ0𝑐𝑅) → ((𝑅 × {0})‘𝑐) = 0)
105, 8, 9sylancr 586 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → ((𝑅 × {0})‘𝑐) = 0)
11 ramz2 16653 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉 ∧ (𝑅 × {0}):𝑅⟶ℕ0) ∧ (𝑐𝑅 ∧ ((𝑅 × {0})‘𝑐) = 0)) → (𝑀 Ramsey (𝑅 × {0})) = 0)
123, 4, 7, 8, 10, 11syl32anc 1376 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → (𝑀 Ramsey (𝑅 × {0})) = 0)
1312ex 412 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑐𝑅 → (𝑀 Ramsey (𝑅 × {0})) = 0))
1413exlimdv 1937 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (∃𝑐 𝑐𝑅 → (𝑀 Ramsey (𝑅 × {0})) = 0))
152, 14syl5bi 241 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅 ≠ ∅ → (𝑀 Ramsey (𝑅 × {0})) = 0))
1615expimpd 453 . . . 4 (𝑀 ∈ ℕ → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
17 simpl 482 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → 𝑅𝑉)
18 simpr 484 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → 𝑅 ≠ ∅)
196a1i 11 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → (𝑅 × {0}):𝑅⟶ℕ0)
20 0z 12260 . . . . . . . 8 0 ∈ ℤ
21 elsni 4575 . . . . . . . . . . 11 (𝑦 ∈ {0} → 𝑦 = 0)
22 0le0 12004 . . . . . . . . . . 11 0 ≤ 0
2321, 22eqbrtrdi 5109 . . . . . . . . . 10 (𝑦 ∈ {0} → 𝑦 ≤ 0)
2423rgen 3073 . . . . . . . . 9 𝑦 ∈ {0}𝑦 ≤ 0
25 rnxp 6062 . . . . . . . . . . 11 (𝑅 ≠ ∅ → ran (𝑅 × {0}) = {0})
2625adantl 481 . . . . . . . . . 10 ((𝑅𝑉𝑅 ≠ ∅) → ran (𝑅 × {0}) = {0})
2726raleqdv 3339 . . . . . . . . 9 ((𝑅𝑉𝑅 ≠ ∅) → (∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0 ↔ ∀𝑦 ∈ {0}𝑦 ≤ 0))
2824, 27mpbiri 257 . . . . . . . 8 ((𝑅𝑉𝑅 ≠ ∅) → ∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0)
29 brralrspcev 5130 . . . . . . . 8 ((0 ∈ ℤ ∧ ∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥)
3020, 28, 29sylancr 586 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥)
31 0ram 16649 . . . . . . 7 (((𝑅𝑉𝑅 ≠ ∅ ∧ (𝑅 × {0}):𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥) → (0 Ramsey (𝑅 × {0})) = sup(ran (𝑅 × {0}), ℝ, < ))
3217, 18, 19, 30, 31syl31anc 1371 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → (0 Ramsey (𝑅 × {0})) = sup(ran (𝑅 × {0}), ℝ, < ))
3326supeq1d 9135 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → sup(ran (𝑅 × {0}), ℝ, < ) = sup({0}, ℝ, < ))
34 ltso 10986 . . . . . . . 8 < Or ℝ
35 0re 10908 . . . . . . . 8 0 ∈ ℝ
36 supsn 9161 . . . . . . . 8 (( < Or ℝ ∧ 0 ∈ ℝ) → sup({0}, ℝ, < ) = 0)
3734, 35, 36mp2an 688 . . . . . . 7 sup({0}, ℝ, < ) = 0
3837a1i 11 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → sup({0}, ℝ, < ) = 0)
3932, 33, 383eqtrd 2782 . . . . 5 ((𝑅𝑉𝑅 ≠ ∅) → (0 Ramsey (𝑅 × {0})) = 0)
40 oveq1 7262 . . . . . 6 (𝑀 = 0 → (𝑀 Ramsey (𝑅 × {0})) = (0 Ramsey (𝑅 × {0})))
4140eqeq1d 2740 . . . . 5 (𝑀 = 0 → ((𝑀 Ramsey (𝑅 × {0})) = 0 ↔ (0 Ramsey (𝑅 × {0})) = 0))
4239, 41syl5ibr 245 . . . 4 (𝑀 = 0 → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
4316, 42jaoi 853 . . 3 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
441, 43sylbi 216 . 2 (𝑀 ∈ ℕ0 → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
45443impib 1114 1 ((𝑀 ∈ ℕ0𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253  {csn 4558   class class class wbr 5070   Or wor 5493   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802   < clt 10940  cle 10941  cn 11903  0cn0 12163  cz 12249   Ramsey cram 16628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945  df-hash 13973  df-ram 16630
This theorem is referenced by:  ramcl  16658
  Copyright terms: Public domain W3C validator