MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz Structured version   Visualization version   GIF version

Theorem ramz 16996
Description: The Ramsey number when 𝐹 is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz ((𝑀 ∈ ℕ0𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0)

Proof of Theorem ramz
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12444 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 n0 4316 . . . . . 6 (𝑅 ≠ ∅ ↔ ∃𝑐 𝑐𝑅)
3 simpll 766 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑀 ∈ ℕ)
4 simplr 768 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑅𝑉)
5 0nn0 12457 . . . . . . . . . . 11 0 ∈ ℕ0
65fconst6 6750 . . . . . . . . . 10 (𝑅 × {0}):𝑅⟶ℕ0
76a1i 11 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → (𝑅 × {0}):𝑅⟶ℕ0)
8 simpr 484 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑐𝑅)
9 fvconst2g 7176 . . . . . . . . . 10 ((0 ∈ ℕ0𝑐𝑅) → ((𝑅 × {0})‘𝑐) = 0)
105, 8, 9sylancr 587 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → ((𝑅 × {0})‘𝑐) = 0)
11 ramz2 16995 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉 ∧ (𝑅 × {0}):𝑅⟶ℕ0) ∧ (𝑐𝑅 ∧ ((𝑅 × {0})‘𝑐) = 0)) → (𝑀 Ramsey (𝑅 × {0})) = 0)
123, 4, 7, 8, 10, 11syl32anc 1380 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → (𝑀 Ramsey (𝑅 × {0})) = 0)
1312ex 412 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑐𝑅 → (𝑀 Ramsey (𝑅 × {0})) = 0))
1413exlimdv 1933 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (∃𝑐 𝑐𝑅 → (𝑀 Ramsey (𝑅 × {0})) = 0))
152, 14biimtrid 242 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅 ≠ ∅ → (𝑀 Ramsey (𝑅 × {0})) = 0))
1615expimpd 453 . . . 4 (𝑀 ∈ ℕ → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
17 simpl 482 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → 𝑅𝑉)
18 simpr 484 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → 𝑅 ≠ ∅)
196a1i 11 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → (𝑅 × {0}):𝑅⟶ℕ0)
20 0z 12540 . . . . . . . 8 0 ∈ ℤ
21 elsni 4606 . . . . . . . . . . 11 (𝑦 ∈ {0} → 𝑦 = 0)
22 0le0 12287 . . . . . . . . . . 11 0 ≤ 0
2321, 22eqbrtrdi 5146 . . . . . . . . . 10 (𝑦 ∈ {0} → 𝑦 ≤ 0)
2423rgen 3046 . . . . . . . . 9 𝑦 ∈ {0}𝑦 ≤ 0
25 rnxp 6143 . . . . . . . . . . 11 (𝑅 ≠ ∅ → ran (𝑅 × {0}) = {0})
2625adantl 481 . . . . . . . . . 10 ((𝑅𝑉𝑅 ≠ ∅) → ran (𝑅 × {0}) = {0})
2726raleqdv 3299 . . . . . . . . 9 ((𝑅𝑉𝑅 ≠ ∅) → (∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0 ↔ ∀𝑦 ∈ {0}𝑦 ≤ 0))
2824, 27mpbiri 258 . . . . . . . 8 ((𝑅𝑉𝑅 ≠ ∅) → ∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0)
29 brralrspcev 5167 . . . . . . . 8 ((0 ∈ ℤ ∧ ∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥)
3020, 28, 29sylancr 587 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥)
31 0ram 16991 . . . . . . 7 (((𝑅𝑉𝑅 ≠ ∅ ∧ (𝑅 × {0}):𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥) → (0 Ramsey (𝑅 × {0})) = sup(ran (𝑅 × {0}), ℝ, < ))
3217, 18, 19, 30, 31syl31anc 1375 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → (0 Ramsey (𝑅 × {0})) = sup(ran (𝑅 × {0}), ℝ, < ))
3326supeq1d 9397 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → sup(ran (𝑅 × {0}), ℝ, < ) = sup({0}, ℝ, < ))
34 ltso 11254 . . . . . . . 8 < Or ℝ
35 0re 11176 . . . . . . . 8 0 ∈ ℝ
36 supsn 9424 . . . . . . . 8 (( < Or ℝ ∧ 0 ∈ ℝ) → sup({0}, ℝ, < ) = 0)
3734, 35, 36mp2an 692 . . . . . . 7 sup({0}, ℝ, < ) = 0
3837a1i 11 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → sup({0}, ℝ, < ) = 0)
3932, 33, 383eqtrd 2768 . . . . 5 ((𝑅𝑉𝑅 ≠ ∅) → (0 Ramsey (𝑅 × {0})) = 0)
40 oveq1 7394 . . . . . 6 (𝑀 = 0 → (𝑀 Ramsey (𝑅 × {0})) = (0 Ramsey (𝑅 × {0})))
4140eqeq1d 2731 . . . . 5 (𝑀 = 0 → ((𝑀 Ramsey (𝑅 × {0})) = 0 ↔ (0 Ramsey (𝑅 × {0})) = 0))
4239, 41imbitrrid 246 . . . 4 (𝑀 = 0 → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
4316, 42jaoi 857 . . 3 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
441, 43sylbi 217 . 2 (𝑀 ∈ ℕ0 → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
45443impib 1116 1 ((𝑀 ∈ ℕ0𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296  {csn 4589   class class class wbr 5107   Or wor 5545   × cxp 5636  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068   < clt 11208  cle 11209  cn 12186  0cn0 12442  cz 12529   Ramsey cram 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-ram 16972
This theorem is referenced by:  ramcl  17000
  Copyright terms: Public domain W3C validator