Step | Hyp | Ref
| Expression |
1 | | elnn0 12470 |
. . 3
β’ (π β β0
β (π β β
β¨ π =
0)) |
2 | | n0 4345 |
. . . . . 6
β’ (π
β β
β
βπ π β π
) |
3 | | simpll 765 |
. . . . . . . . 9
β’ (((π β β β§ π
β π) β§ π β π
) β π β β) |
4 | | simplr 767 |
. . . . . . . . 9
β’ (((π β β β§ π
β π) β§ π β π
) β π
β π) |
5 | | 0nn0 12483 |
. . . . . . . . . . 11
β’ 0 β
β0 |
6 | 5 | fconst6 6778 |
. . . . . . . . . 10
β’ (π
Γ {0}):π
βΆβ0 |
7 | 6 | a1i 11 |
. . . . . . . . 9
β’ (((π β β β§ π
β π) β§ π β π
) β (π
Γ {0}):π
βΆβ0) |
8 | | simpr 485 |
. . . . . . . . 9
β’ (((π β β β§ π
β π) β§ π β π
) β π β π
) |
9 | | fvconst2g 7199 |
. . . . . . . . . 10
β’ ((0
β β0 β§ π β π
) β ((π
Γ {0})βπ) = 0) |
10 | 5, 8, 9 | sylancr 587 |
. . . . . . . . 9
β’ (((π β β β§ π
β π) β§ π β π
) β ((π
Γ {0})βπ) = 0) |
11 | | ramz2 16953 |
. . . . . . . . 9
β’ (((π β β β§ π
β π β§ (π
Γ {0}):π
βΆβ0) β§ (π β π
β§ ((π
Γ {0})βπ) = 0)) β (π Ramsey (π
Γ {0})) = 0) |
12 | 3, 4, 7, 8, 10, 11 | syl32anc 1378 |
. . . . . . . 8
β’ (((π β β β§ π
β π) β§ π β π
) β (π Ramsey (π
Γ {0})) = 0) |
13 | 12 | ex 413 |
. . . . . . 7
β’ ((π β β β§ π
β π) β (π β π
β (π Ramsey (π
Γ {0})) = 0)) |
14 | 13 | exlimdv 1936 |
. . . . . 6
β’ ((π β β β§ π
β π) β (βπ π β π
β (π Ramsey (π
Γ {0})) = 0)) |
15 | 2, 14 | biimtrid 241 |
. . . . 5
β’ ((π β β β§ π
β π) β (π
β β
β (π Ramsey (π
Γ {0})) = 0)) |
16 | 15 | expimpd 454 |
. . . 4
β’ (π β β β ((π
β π β§ π
β β
) β (π Ramsey (π
Γ {0})) = 0)) |
17 | | simpl 483 |
. . . . . . 7
β’ ((π
β π β§ π
β β
) β π
β π) |
18 | | simpr 485 |
. . . . . . 7
β’ ((π
β π β§ π
β β
) β π
β β
) |
19 | 6 | a1i 11 |
. . . . . . 7
β’ ((π
β π β§ π
β β
) β (π
Γ {0}):π
βΆβ0) |
20 | | 0z 12565 |
. . . . . . . 8
β’ 0 β
β€ |
21 | | elsni 4644 |
. . . . . . . . . . 11
β’ (π¦ β {0} β π¦ = 0) |
22 | | 0le0 12309 |
. . . . . . . . . . 11
β’ 0 β€
0 |
23 | 21, 22 | eqbrtrdi 5186 |
. . . . . . . . . 10
β’ (π¦ β {0} β π¦ β€ 0) |
24 | 23 | rgen 3063 |
. . . . . . . . 9
β’
βπ¦ β
{0}π¦ β€
0 |
25 | | rnxp 6166 |
. . . . . . . . . . 11
β’ (π
β β
β ran (π
Γ {0}) =
{0}) |
26 | 25 | adantl 482 |
. . . . . . . . . 10
β’ ((π
β π β§ π
β β
) β ran (π
Γ {0}) = {0}) |
27 | 26 | raleqdv 3325 |
. . . . . . . . 9
β’ ((π
β π β§ π
β β
) β (βπ¦ β ran (π
Γ {0})π¦ β€ 0 β βπ¦ β {0}π¦ β€ 0)) |
28 | 24, 27 | mpbiri 257 |
. . . . . . . 8
β’ ((π
β π β§ π
β β
) β βπ¦ β ran (π
Γ {0})π¦ β€ 0) |
29 | | brralrspcev 5207 |
. . . . . . . 8
β’ ((0
β β€ β§ βπ¦ β ran (π
Γ {0})π¦ β€ 0) β βπ₯ β β€ βπ¦ β ran (π
Γ {0})π¦ β€ π₯) |
30 | 20, 28, 29 | sylancr 587 |
. . . . . . 7
β’ ((π
β π β§ π
β β
) β βπ₯ β β€ βπ¦ β ran (π
Γ {0})π¦ β€ π₯) |
31 | | 0ram 16949 |
. . . . . . 7
β’ (((π
β π β§ π
β β
β§ (π
Γ {0}):π
βΆβ0) β§
βπ₯ β β€
βπ¦ β ran (π
Γ {0})π¦ β€ π₯) β (0 Ramsey (π
Γ {0})) = sup(ran (π
Γ {0}), β, <
)) |
32 | 17, 18, 19, 30, 31 | syl31anc 1373 |
. . . . . 6
β’ ((π
β π β§ π
β β
) β (0 Ramsey (π
Γ {0})) = sup(ran (π
Γ {0}), β, <
)) |
33 | 26 | supeq1d 9437 |
. . . . . 6
β’ ((π
β π β§ π
β β
) β sup(ran (π
Γ {0}), β, < ) =
sup({0}, β, < )) |
34 | | ltso 11290 |
. . . . . . . 8
β’ < Or
β |
35 | | 0re 11212 |
. . . . . . . 8
β’ 0 β
β |
36 | | supsn 9463 |
. . . . . . . 8
β’ (( <
Or β β§ 0 β β) β sup({0}, β, < ) =
0) |
37 | 34, 35, 36 | mp2an 690 |
. . . . . . 7
β’ sup({0},
β, < ) = 0 |
38 | 37 | a1i 11 |
. . . . . 6
β’ ((π
β π β§ π
β β
) β sup({0}, β, <
) = 0) |
39 | 32, 33, 38 | 3eqtrd 2776 |
. . . . 5
β’ ((π
β π β§ π
β β
) β (0 Ramsey (π
Γ {0})) =
0) |
40 | | oveq1 7412 |
. . . . . 6
β’ (π = 0 β (π Ramsey (π
Γ {0})) = (0 Ramsey (π
Γ {0}))) |
41 | 40 | eqeq1d 2734 |
. . . . 5
β’ (π = 0 β ((π Ramsey (π
Γ {0})) = 0 β (0 Ramsey (π
Γ {0})) =
0)) |
42 | 39, 41 | imbitrrid 245 |
. . . 4
β’ (π = 0 β ((π
β π β§ π
β β
) β (π Ramsey (π
Γ {0})) = 0)) |
43 | 16, 42 | jaoi 855 |
. . 3
β’ ((π β β β¨ π = 0) β ((π
β π β§ π
β β
) β (π Ramsey (π
Γ {0})) = 0)) |
44 | 1, 43 | sylbi 216 |
. 2
β’ (π β β0
β ((π
β π β§ π
β β
) β (π Ramsey (π
Γ {0})) = 0)) |
45 | 44 | 3impib 1116 |
1
β’ ((π β β0
β§ π
β π β§ π
β β
) β (π Ramsey (π
Γ {0})) = 0) |