MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz Structured version   Visualization version   GIF version

Theorem ramz 16897
Description: The Ramsey number when 𝐹 is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz ((𝑀 ∈ ℕ0𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0)

Proof of Theorem ramz
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12415 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 n0 4306 . . . . . 6 (𝑅 ≠ ∅ ↔ ∃𝑐 𝑐𝑅)
3 simpll 765 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑀 ∈ ℕ)
4 simplr 767 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑅𝑉)
5 0nn0 12428 . . . . . . . . . . 11 0 ∈ ℕ0
65fconst6 6732 . . . . . . . . . 10 (𝑅 × {0}):𝑅⟶ℕ0
76a1i 11 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → (𝑅 × {0}):𝑅⟶ℕ0)
8 simpr 485 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → 𝑐𝑅)
9 fvconst2g 7151 . . . . . . . . . 10 ((0 ∈ ℕ0𝑐𝑅) → ((𝑅 × {0})‘𝑐) = 0)
105, 8, 9sylancr 587 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → ((𝑅 × {0})‘𝑐) = 0)
11 ramz2 16896 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑅𝑉 ∧ (𝑅 × {0}):𝑅⟶ℕ0) ∧ (𝑐𝑅 ∧ ((𝑅 × {0})‘𝑐) = 0)) → (𝑀 Ramsey (𝑅 × {0})) = 0)
123, 4, 7, 8, 10, 11syl32anc 1378 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑅𝑉) ∧ 𝑐𝑅) → (𝑀 Ramsey (𝑅 × {0})) = 0)
1312ex 413 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑐𝑅 → (𝑀 Ramsey (𝑅 × {0})) = 0))
1413exlimdv 1936 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (∃𝑐 𝑐𝑅 → (𝑀 Ramsey (𝑅 × {0})) = 0))
152, 14biimtrid 241 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑅𝑉) → (𝑅 ≠ ∅ → (𝑀 Ramsey (𝑅 × {0})) = 0))
1615expimpd 454 . . . 4 (𝑀 ∈ ℕ → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
17 simpl 483 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → 𝑅𝑉)
18 simpr 485 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → 𝑅 ≠ ∅)
196a1i 11 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → (𝑅 × {0}):𝑅⟶ℕ0)
20 0z 12510 . . . . . . . 8 0 ∈ ℤ
21 elsni 4603 . . . . . . . . . . 11 (𝑦 ∈ {0} → 𝑦 = 0)
22 0le0 12254 . . . . . . . . . . 11 0 ≤ 0
2321, 22eqbrtrdi 5144 . . . . . . . . . 10 (𝑦 ∈ {0} → 𝑦 ≤ 0)
2423rgen 3066 . . . . . . . . 9 𝑦 ∈ {0}𝑦 ≤ 0
25 rnxp 6122 . . . . . . . . . . 11 (𝑅 ≠ ∅ → ran (𝑅 × {0}) = {0})
2625adantl 482 . . . . . . . . . 10 ((𝑅𝑉𝑅 ≠ ∅) → ran (𝑅 × {0}) = {0})
2726raleqdv 3313 . . . . . . . . 9 ((𝑅𝑉𝑅 ≠ ∅) → (∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0 ↔ ∀𝑦 ∈ {0}𝑦 ≤ 0))
2824, 27mpbiri 257 . . . . . . . 8 ((𝑅𝑉𝑅 ≠ ∅) → ∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0)
29 brralrspcev 5165 . . . . . . . 8 ((0 ∈ ℤ ∧ ∀𝑦 ∈ ran (𝑅 × {0})𝑦 ≤ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥)
3020, 28, 29sylancr 587 . . . . . . 7 ((𝑅𝑉𝑅 ≠ ∅) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥)
31 0ram 16892 . . . . . . 7 (((𝑅𝑉𝑅 ≠ ∅ ∧ (𝑅 × {0}):𝑅⟶ℕ0) ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ ran (𝑅 × {0})𝑦𝑥) → (0 Ramsey (𝑅 × {0})) = sup(ran (𝑅 × {0}), ℝ, < ))
3217, 18, 19, 30, 31syl31anc 1373 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → (0 Ramsey (𝑅 × {0})) = sup(ran (𝑅 × {0}), ℝ, < ))
3326supeq1d 9382 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → sup(ran (𝑅 × {0}), ℝ, < ) = sup({0}, ℝ, < ))
34 ltso 11235 . . . . . . . 8 < Or ℝ
35 0re 11157 . . . . . . . 8 0 ∈ ℝ
36 supsn 9408 . . . . . . . 8 (( < Or ℝ ∧ 0 ∈ ℝ) → sup({0}, ℝ, < ) = 0)
3734, 35, 36mp2an 690 . . . . . . 7 sup({0}, ℝ, < ) = 0
3837a1i 11 . . . . . 6 ((𝑅𝑉𝑅 ≠ ∅) → sup({0}, ℝ, < ) = 0)
3932, 33, 383eqtrd 2780 . . . . 5 ((𝑅𝑉𝑅 ≠ ∅) → (0 Ramsey (𝑅 × {0})) = 0)
40 oveq1 7364 . . . . . 6 (𝑀 = 0 → (𝑀 Ramsey (𝑅 × {0})) = (0 Ramsey (𝑅 × {0})))
4140eqeq1d 2738 . . . . 5 (𝑀 = 0 → ((𝑀 Ramsey (𝑅 × {0})) = 0 ↔ (0 Ramsey (𝑅 × {0})) = 0))
4239, 41syl5ibr 245 . . . 4 (𝑀 = 0 → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
4316, 42jaoi 855 . . 3 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
441, 43sylbi 216 . 2 (𝑀 ∈ ℕ0 → ((𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0))
45443impib 1116 1 ((𝑀 ∈ ℕ0𝑅𝑉𝑅 ≠ ∅) → (𝑀 Ramsey (𝑅 × {0})) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  c0 4282  {csn 4586   class class class wbr 5105   Or wor 5544   × cxp 5631  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050  0cc0 11051   < clt 11189  cle 11190  cn 12153  0cn0 12413  cz 12499   Ramsey cram 16871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-fac 14174  df-bc 14203  df-hash 14231  df-ram 16873
This theorem is referenced by:  ramcl  16901
  Copyright terms: Public domain W3C validator