Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnn0ssfz Structured version   Visualization version   GIF version

Theorem ssnn0ssfz 45685
Description: For any finite subset of 0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 31108. (Contributed by AV, 30-Sep-2019.)
Assertion
Ref Expression
ssnn0ssfz (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnn0ssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12248 . . 3 0 ∈ ℕ0
2 simpr 485 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4330 . . . 4 ∅ ⊆ (0...0)
42, 3eqsstrdi 3975 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (0...0))
5 oveq2 7283 . . . . 5 (𝑛 = 0 → (0...𝑛) = (0...0))
65sseq2d 3953 . . . 4 (𝑛 = 0 → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...0)))
76rspcev 3561 . . 3 ((0 ∈ ℕ0𝐴 ⊆ (0...0)) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
81, 4, 7sylancr 587 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
9 elin 3903 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ0𝐴 ∈ Fin))
109simplbi 498 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ 𝒫 ℕ0)
1110adantr 481 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ0)
1211elpwid 4544 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ0)
13 nn0ssre 12237 . . . . . . 7 0 ⊆ ℝ
14 ltso 11055 . . . . . . 7 < Or ℝ
15 soss 5523 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ0
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ0)
189simprbi 497 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 481 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 485 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 9228 . . . . 5 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1371 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2312, 22sseldd 3922 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
2412sselda 3921 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
25 nn0uz 12620 . . . . . . 7 0 = (ℤ‘0)
2624, 25eleqtrdi 2849 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘0))
2724nn0zd 12424 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 481 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ0)
2922adantr 481 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
3028, 29sseldd 3922 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
3130nn0zd 12424 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℤ)
32 fisup2g 9227 . . . . . . . . . . . 12 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 3988 . . . . . . . . . . 11 (𝐴 ⊆ ℕ0 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 9218 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ0, < ) < 𝑥))
3736imp 407 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ0, < ) < 𝑥)
3824nn0red 12294 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nn0red 12294 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℝ)
4038, 39lenltd 11121 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ0, < ) ↔ ¬ sup(𝐴, ℕ0, < ) < 𝑥))
4137, 40mpbird 256 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ0, < ))
42 eluz2 12588 . . . . . . 7 (sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ0, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ0, < )))
4327, 31, 41, 42syl3anbrc 1342 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥))
44 eluzfz 13251 . . . . . 6 ((𝑥 ∈ (ℤ‘0) ∧ sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4526, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4645ex 413 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (0...sup(𝐴, ℕ0, < ))))
4746ssrdv 3927 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (0...sup(𝐴, ℕ0, < )))
48 oveq2 7283 . . . . 5 (𝑛 = sup(𝐴, ℕ0, < ) → (0...𝑛) = (0...sup(𝐴, ℕ0, < )))
4948sseq2d 3953 . . . 4 (𝑛 = sup(𝐴, ℕ0, < ) → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))))
5049rspcev 3561 . . 3 ((sup(𝐴, ℕ0, < ) ∈ ℕ0𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
5123, 47, 50syl2anc 584 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
528, 51pm2.61dane 3032 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074   Or wor 5502  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  cr 10870  0cc0 10871   < clt 11009  cle 11010  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator