Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnn0ssfz Structured version   Visualization version   GIF version

Theorem ssnn0ssfz 48337
Description: For any finite subset of 0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 32743. (Contributed by AV, 30-Sep-2019.)
Assertion
Ref Expression
ssnn0ssfz (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnn0ssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12417 . . 3 0 ∈ ℕ0
2 simpr 484 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4353 . . . 4 ∅ ⊆ (0...0)
42, 3eqsstrdi 3982 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (0...0))
5 oveq2 7361 . . . . 5 (𝑛 = 0 → (0...𝑛) = (0...0))
65sseq2d 3970 . . . 4 (𝑛 = 0 → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...0)))
76rspcev 3579 . . 3 ((0 ∈ ℕ0𝐴 ⊆ (0...0)) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
81, 4, 7sylancr 587 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
9 elin 3921 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ0𝐴 ∈ Fin))
109simplbi 497 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ 𝒫 ℕ0)
1110adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ0)
1211elpwid 4562 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ0)
13 nn0ssre 12406 . . . . . . 7 0 ⊆ ℝ
14 ltso 11214 . . . . . . 7 < Or ℝ
15 soss 5551 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ0
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ0)
189simprbi 496 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 484 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 9379 . . . . 5 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1374 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2312, 22sseldd 3938 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
2412sselda 3937 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
25 nn0uz 12795 . . . . . . 7 0 = (ℤ‘0)
2624, 25eleqtrdi 2838 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘0))
2724nn0zd 12515 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ0)
2922adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
3028, 29sseldd 3938 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
3130nn0zd 12515 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℤ)
32 fisup2g 9378 . . . . . . . . . . . 12 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1374 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 4007 . . . . . . . . . . 11 (𝐴 ⊆ ℕ0 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 9368 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ0, < ) < 𝑥))
3736imp 406 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ0, < ) < 𝑥)
3824nn0red 12464 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nn0red 12464 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℝ)
4038, 39lenltd 11280 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ0, < ) ↔ ¬ sup(𝐴, ℕ0, < ) < 𝑥))
4137, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ0, < ))
42 eluz2 12759 . . . . . . 7 (sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ0, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ0, < )))
4327, 31, 41, 42syl3anbrc 1344 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥))
44 eluzfz 13440 . . . . . 6 ((𝑥 ∈ (ℤ‘0) ∧ sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4526, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4645ex 412 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (0...sup(𝐴, ℕ0, < ))))
4746ssrdv 3943 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (0...sup(𝐴, ℕ0, < )))
48 oveq2 7361 . . . . 5 (𝑛 = sup(𝐴, ℕ0, < ) → (0...𝑛) = (0...sup(𝐴, ℕ0, < )))
4948sseq2d 3970 . . . 4 (𝑛 = sup(𝐴, ℕ0, < ) → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))))
5049rspcev 3579 . . 3 ((sup(𝐴, ℕ0, < ) ∈ ℕ0𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
5123, 47, 50syl2anc 584 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
528, 51pm2.61dane 3012 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553   class class class wbr 5095   Or wor 5530  cfv 6486  (class class class)co 7353  Fincfn 8879  supcsup 9349  cr 11027  0cc0 11028   < clt 11168  cle 11169  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator