Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnn0ssfz Structured version   Visualization version   GIF version

Theorem ssnn0ssfz 46515
Description: For any finite subset of 0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 31744. (Contributed by AV, 30-Sep-2019.)
Assertion
Ref Expression
ssnn0ssfz (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnn0ssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12436 . . 3 0 ∈ ℕ0
2 simpr 486 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4360 . . . 4 ∅ ⊆ (0...0)
42, 3eqsstrdi 4002 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (0...0))
5 oveq2 7369 . . . . 5 (𝑛 = 0 → (0...𝑛) = (0...0))
65sseq2d 3980 . . . 4 (𝑛 = 0 → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...0)))
76rspcev 3583 . . 3 ((0 ∈ ℕ0𝐴 ⊆ (0...0)) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
81, 4, 7sylancr 588 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
9 elin 3930 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ0𝐴 ∈ Fin))
109simplbi 499 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ 𝒫 ℕ0)
1110adantr 482 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ0)
1211elpwid 4573 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ0)
13 nn0ssre 12425 . . . . . . 7 0 ⊆ ℝ
14 ltso 11243 . . . . . . 7 < Or ℝ
15 soss 5569 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ0
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ0)
189simprbi 498 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 482 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 486 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 9413 . . . . 5 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1373 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2312, 22sseldd 3949 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
2412sselda 3948 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
25 nn0uz 12813 . . . . . . 7 0 = (ℤ‘0)
2624, 25eleqtrdi 2844 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘0))
2724nn0zd 12533 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 482 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ0)
2922adantr 482 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
3028, 29sseldd 3949 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
3130nn0zd 12533 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℤ)
32 fisup2g 9412 . . . . . . . . . . . 12 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1373 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 4015 . . . . . . . . . . 11 (𝐴 ⊆ ℕ0 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 9403 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ0, < ) < 𝑥))
3736imp 408 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ0, < ) < 𝑥)
3824nn0red 12482 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nn0red 12482 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℝ)
4038, 39lenltd 11309 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ0, < ) ↔ ¬ sup(𝐴, ℕ0, < ) < 𝑥))
4137, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ0, < ))
42 eluz2 12777 . . . . . . 7 (sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ0, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ0, < )))
4327, 31, 41, 42syl3anbrc 1344 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥))
44 eluzfz 13445 . . . . . 6 ((𝑥 ∈ (ℤ‘0) ∧ sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4526, 43, 44syl2anc 585 . . . . 5 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4645ex 414 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (0...sup(𝐴, ℕ0, < ))))
4746ssrdv 3954 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (0...sup(𝐴, ℕ0, < )))
48 oveq2 7369 . . . . 5 (𝑛 = sup(𝐴, ℕ0, < ) → (0...𝑛) = (0...sup(𝐴, ℕ0, < )))
4948sseq2d 3980 . . . 4 (𝑛 = sup(𝐴, ℕ0, < ) → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))))
5049rspcev 3583 . . 3 ((sup(𝐴, ℕ0, < ) ∈ ℕ0𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
5123, 47, 50syl2anc 585 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
528, 51pm2.61dane 3029 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  cin 3913  wss 3914  c0 4286  𝒫 cpw 4564   class class class wbr 5109   Or wor 5548  cfv 6500  (class class class)co 7361  Fincfn 8889  supcsup 9384  cr 11058  0cc0 11059   < clt 11197  cle 11198  0cn0 12421  cz 12507  cuz 12771  ...cfz 13433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator