Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnn0ssfz Structured version   Visualization version   GIF version

Theorem ssnn0ssfz 45573
Description: For any finite subset of 0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 31010. (Contributed by AV, 30-Sep-2019.)
Assertion
Ref Expression
ssnn0ssfz (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnn0ssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12178 . . 3 0 ∈ ℕ0
2 simpr 484 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4327 . . . 4 ∅ ⊆ (0...0)
42, 3eqsstrdi 3971 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (0...0))
5 oveq2 7263 . . . . 5 (𝑛 = 0 → (0...𝑛) = (0...0))
65sseq2d 3949 . . . 4 (𝑛 = 0 → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...0)))
76rspcev 3552 . . 3 ((0 ∈ ℕ0𝐴 ⊆ (0...0)) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
81, 4, 7sylancr 586 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
9 elin 3899 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ0𝐴 ∈ Fin))
109simplbi 497 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ 𝒫 ℕ0)
1110adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ0)
1211elpwid 4541 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ0)
13 nn0ssre 12167 . . . . . . 7 0 ⊆ ℝ
14 ltso 10986 . . . . . . 7 < Or ℝ
15 soss 5514 . . . . . . 7 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ0
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ0)
189simprbi 496 . . . . . 6 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 484 . . . . 5 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 9158 . . . . 5 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1370 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
2312, 22sseldd 3918 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
2412sselda 3917 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ0)
25 nn0uz 12549 . . . . . . 7 0 = (ℤ‘0)
2624, 25eleqtrdi 2849 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘0))
2724nn0zd 12353 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ0)
2922adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ 𝐴)
3028, 29sseldd 3918 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℕ0)
3130nn0zd 12353 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℤ)
32 fisup2g 9157 . . . . . . . . . . . 12 (( < Or ℕ0 ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ0)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1370 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 3984 . . . . . . . . . . 11 (𝐴 ⊆ ℕ0 → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ0 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ0 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 9148 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ0, < ) < 𝑥))
3736imp 406 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ0, < ) < 𝑥)
3824nn0red 12224 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nn0red 12224 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ ℝ)
4038, 39lenltd 11051 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ0, < ) ↔ ¬ sup(𝐴, ℕ0, < ) < 𝑥))
4137, 40mpbird 256 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ0, < ))
42 eluz2 12517 . . . . . . 7 (sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ0, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ0, < )))
4327, 31, 41, 42syl3anbrc 1341 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥))
44 eluzfz 13180 . . . . . 6 ((𝑥 ∈ (ℤ‘0) ∧ sup(𝐴, ℕ0, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4526, 43, 44syl2anc 583 . . . . 5 (((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (0...sup(𝐴, ℕ0, < )))
4645ex 412 . . . 4 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (0...sup(𝐴, ℕ0, < ))))
4746ssrdv 3923 . . 3 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (0...sup(𝐴, ℕ0, < )))
48 oveq2 7263 . . . . 5 (𝑛 = sup(𝐴, ℕ0, < ) → (0...𝑛) = (0...sup(𝐴, ℕ0, < )))
4948sseq2d 3949 . . . 4 (𝑛 = sup(𝐴, ℕ0, < ) → (𝐴 ⊆ (0...𝑛) ↔ 𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))))
5049rspcev 3552 . . 3 ((sup(𝐴, ℕ0, < ) ∈ ℕ0𝐴 ⊆ (0...sup(𝐴, ℕ0, < ))) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
5123, 47, 50syl2anc 583 . 2 ((𝐴 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
528, 51pm2.61dane 3031 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   class class class wbr 5070   Or wor 5493  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802   < clt 10940  cle 10941  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator