Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnssfz Structured version   Visualization version   GIF version

Theorem ssnnssfz 32796
Description: For any finite subset of , find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
ssnnssfz (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnnssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12275 . . 3 1 ∈ ℕ
2 simpr 484 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4406 . . . 4 ∅ ⊆ (1...1)
42, 3eqsstrdi 4050 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (1...1))
5 oveq2 7439 . . . . 5 (𝑛 = 1 → (1...𝑛) = (1...1))
65sseq2d 4028 . . . 4 (𝑛 = 1 → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...1)))
76rspcev 3622 . . 3 ((1 ∈ ℕ ∧ 𝐴 ⊆ (1...1)) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
81, 4, 7sylancr 587 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
9 elin 3979 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ ∧ 𝐴 ∈ Fin))
109simplbi 497 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ 𝒫 ℕ)
1110adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ)
1211elpwid 4614 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ)
13 nnssre 12268 . . . . . . 7 ℕ ⊆ ℝ
14 ltso 11339 . . . . . . 7 < Or ℝ
15 soss 5617 . . . . . . 7 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ)
189simprbi 496 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 484 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 9507 . . . . 5 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1371 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2312, 22sseldd 3996 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ ℕ)
2412sselda 3995 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
25 nnuz 12919 . . . . . . 7 ℕ = (ℤ‘1)
2624, 25eleqtrdi 2849 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘1))
2724nnzd 12638 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ)
2922adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ 𝐴)
3028, 29sseldd 3996 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℕ)
3130nnzd 12638 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℤ)
32 fisup2g 9506 . . . . . . . . . . . 12 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 4065 . . . . . . . . . . 11 (𝐴 ⊆ ℕ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 9497 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ, < ) < 𝑥))
3736imp 406 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ, < ) < 𝑥)
3824nnred 12279 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nnred 12279 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℝ)
4038, 39lenltd 11405 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ, < ) ↔ ¬ sup(𝐴, ℕ, < ) < 𝑥))
4137, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ, < ))
42 eluz2 12882 . . . . . . 7 (sup(𝐴, ℕ, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ, < )))
4327, 31, 41, 42syl3anbrc 1342 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ (ℤ𝑥))
44 eluzfz 13556 . . . . . 6 ((𝑥 ∈ (ℤ‘1) ∧ sup(𝐴, ℕ, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4526, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4645ex 412 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (1...sup(𝐴, ℕ, < ))))
4746ssrdv 4001 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (1...sup(𝐴, ℕ, < )))
48 oveq2 7439 . . . . 5 (𝑛 = sup(𝐴, ℕ, < ) → (1...𝑛) = (1...sup(𝐴, ℕ, < )))
4948sseq2d 4028 . . . 4 (𝑛 = sup(𝐴, ℕ, < ) → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))))
5049rspcev 3622 . . 3 ((sup(𝐴, ℕ, < ) ∈ ℕ ∧ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
5123, 47, 50syl2anc 584 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
528, 51pm2.61dane 3027 1 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   class class class wbr 5148   Or wor 5596  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152  1c1 11154   < clt 11293  cle 11294  cn 12264  cz 12611  cuz 12876  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  esumfsup  34051  esumpcvgval  34059
  Copyright terms: Public domain W3C validator