Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnssfz Structured version   Visualization version   GIF version

Theorem ssnnssfz 30536
Description: For any finite subset of , find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
ssnnssfz (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnnssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11636 . . 3 1 ∈ ℕ
2 simpr 488 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4304 . . . 4 ∅ ⊆ (1...1)
42, 3eqsstrdi 3969 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (1...1))
5 oveq2 7143 . . . . 5 (𝑛 = 1 → (1...𝑛) = (1...1))
65sseq2d 3947 . . . 4 (𝑛 = 1 → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...1)))
76rspcev 3571 . . 3 ((1 ∈ ℕ ∧ 𝐴 ⊆ (1...1)) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
81, 4, 7sylancr 590 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
9 elin 3897 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ ∧ 𝐴 ∈ Fin))
109simplbi 501 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ 𝒫 ℕ)
1110adantr 484 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ)
1211elpwid 4508 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ)
13 nnssre 11629 . . . . . . 7 ℕ ⊆ ℝ
14 ltso 10710 . . . . . . 7 < Or ℝ
15 soss 5457 . . . . . . 7 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ)
189simprbi 500 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 484 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 488 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 8917 . . . . 5 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1369 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2312, 22sseldd 3916 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ ℕ)
2412sselda 3915 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
25 nnuz 12269 . . . . . . 7 ℕ = (ℤ‘1)
2624, 25eleqtrdi 2900 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘1))
2724nnzd 12074 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 484 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ)
2922adantr 484 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ 𝐴)
3028, 29sseldd 3916 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℕ)
3130nnzd 12074 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℤ)
32 fisup2g 8916 . . . . . . . . . . . 12 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1369 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 3982 . . . . . . . . . . 11 (𝐴 ⊆ ℕ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 8907 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ, < ) < 𝑥))
3736imp 410 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ, < ) < 𝑥)
3824nnred 11640 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nnred 11640 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℝ)
4038, 39lenltd 10775 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ, < ) ↔ ¬ sup(𝐴, ℕ, < ) < 𝑥))
4137, 40mpbird 260 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ, < ))
42 eluz2 12237 . . . . . . 7 (sup(𝐴, ℕ, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ, < )))
4327, 31, 41, 42syl3anbrc 1340 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ (ℤ𝑥))
44 eluzfz 12897 . . . . . 6 ((𝑥 ∈ (ℤ‘1) ∧ sup(𝐴, ℕ, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4526, 43, 44syl2anc 587 . . . . 5 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4645ex 416 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (1...sup(𝐴, ℕ, < ))))
4746ssrdv 3921 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (1...sup(𝐴, ℕ, < )))
48 oveq2 7143 . . . . 5 (𝑛 = sup(𝐴, ℕ, < ) → (1...𝑛) = (1...sup(𝐴, ℕ, < )))
4948sseq2d 3947 . . . 4 (𝑛 = sup(𝐴, ℕ, < ) → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))))
5049rspcev 3571 . . 3 ((sup(𝐴, ℕ, < ) ∈ ℕ ∧ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
5123, 47, 50syl2anc 587 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
528, 51pm2.61dane 3074 1 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030   Or wor 5437  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cr 10525  1c1 10527   < clt 10664  cle 10665  cn 11625  cz 11969  cuz 12231  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  esumfsup  31439  esumpcvgval  31447
  Copyright terms: Public domain W3C validator