Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnssfz Structured version   Visualization version   GIF version

Theorem ssnnssfz 32776
Description: For any finite subset of , find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
ssnnssfz (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnnssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12145 . . 3 1 ∈ ℕ
2 simpr 484 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4349 . . . 4 ∅ ⊆ (1...1)
42, 3eqsstrdi 3975 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (1...1))
5 oveq2 7362 . . . . 5 (𝑛 = 1 → (1...𝑛) = (1...1))
65sseq2d 3963 . . . 4 (𝑛 = 1 → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...1)))
76rspcev 3573 . . 3 ((1 ∈ ℕ ∧ 𝐴 ⊆ (1...1)) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
81, 4, 7sylancr 587 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
9 elin 3914 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ ∧ 𝐴 ∈ Fin))
109simplbi 497 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ 𝒫 ℕ)
1110adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ)
1211elpwid 4560 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ)
13 nnssre 12138 . . . . . . 7 ℕ ⊆ ℝ
14 ltso 11202 . . . . . . 7 < Or ℝ
15 soss 5549 . . . . . . 7 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ)
189simprbi 496 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 484 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 9363 . . . . 5 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1374 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2312, 22sseldd 3931 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ ℕ)
2412sselda 3930 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
25 nnuz 12779 . . . . . . 7 ℕ = (ℤ‘1)
2624, 25eleqtrdi 2843 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘1))
2724nnzd 12503 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ)
2922adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ 𝐴)
3028, 29sseldd 3931 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℕ)
3130nnzd 12503 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℤ)
32 fisup2g 9362 . . . . . . . . . . . 12 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1374 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 4000 . . . . . . . . . . 11 (𝐴 ⊆ ℕ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 9352 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ, < ) < 𝑥))
3736imp 406 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ, < ) < 𝑥)
3824nnred 12149 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nnred 12149 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℝ)
4038, 39lenltd 11268 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ, < ) ↔ ¬ sup(𝐴, ℕ, < ) < 𝑥))
4137, 40mpbird 257 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ, < ))
42 eluz2 12746 . . . . . . 7 (sup(𝐴, ℕ, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ, < )))
4327, 31, 41, 42syl3anbrc 1344 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ (ℤ𝑥))
44 eluzfz 13423 . . . . . 6 ((𝑥 ∈ (ℤ‘1) ∧ sup(𝐴, ℕ, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4526, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4645ex 412 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (1...sup(𝐴, ℕ, < ))))
4746ssrdv 3936 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (1...sup(𝐴, ℕ, < )))
48 oveq2 7362 . . . . 5 (𝑛 = sup(𝐴, ℕ, < ) → (1...𝑛) = (1...sup(𝐴, ℕ, < )))
4948sseq2d 3963 . . . 4 (𝑛 = sup(𝐴, ℕ, < ) → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))))
5049rspcev 3573 . . 3 ((sup(𝐴, ℕ, < ) ∈ ℕ ∧ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
5123, 47, 50syl2anc 584 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
528, 51pm2.61dane 3016 1 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cin 3897  wss 3898  c0 4282  𝒫 cpw 4551   class class class wbr 5095   Or wor 5528  cfv 6488  (class class class)co 7354  Fincfn 8877  supcsup 9333  cr 11014  1c1 11016   < clt 11155  cle 11156  cn 12134  cz 12477  cuz 12740  ...cfz 13411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412
This theorem is referenced by:  esumfsup  34106  esumpcvgval  34114
  Copyright terms: Public domain W3C validator