Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnssfz Structured version   Visualization version   GIF version

Theorem ssnnssfz 30269
Description: For any finite subset of , find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
ssnnssfz (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnnssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11452 . . 3 1 ∈ ℕ
2 simpr 477 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 4236 . . . 4 ∅ ⊆ (1...1)
42, 3syl6eqss 3911 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (1...1))
5 oveq2 6984 . . . . 5 (𝑛 = 1 → (1...𝑛) = (1...1))
65sseq2d 3889 . . . 4 (𝑛 = 1 → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...1)))
76rspcev 3535 . . 3 ((1 ∈ ℕ ∧ 𝐴 ⊆ (1...1)) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
81, 4, 7sylancr 578 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
9 elin 4057 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ ∧ 𝐴 ∈ Fin))
109simplbi 490 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ 𝒫 ℕ)
1110adantr 473 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ)
1211elpwid 4434 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ)
13 nnssre 11443 . . . . . . 7 ℕ ⊆ ℝ
14 ltso 10521 . . . . . . 7 < Or ℝ
15 soss 5345 . . . . . . 7 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ)
189simprbi 489 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 473 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 477 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 8728 . . . . 5 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1352 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2312, 22sseldd 3859 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ ℕ)
2412sselda 3858 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
25 nnuz 12095 . . . . . . 7 ℕ = (ℤ‘1)
2624, 25syl6eleq 2876 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘1))
2724nnzd 11899 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 473 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ)
2922adantr 473 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ 𝐴)
3028, 29sseldd 3859 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℕ)
3130nnzd 11899 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℤ)
32 fisup2g 8727 . . . . . . . . . . . 12 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1352 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 3924 . . . . . . . . . . 11 (𝐴 ⊆ ℕ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 65 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 8718 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ, < ) < 𝑥))
3736imp 398 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ, < ) < 𝑥)
3824nnred 11456 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nnred 11456 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℝ)
4038, 39lenltd 10586 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ, < ) ↔ ¬ sup(𝐴, ℕ, < ) < 𝑥))
4137, 40mpbird 249 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ, < ))
42 eluz2 12064 . . . . . . 7 (sup(𝐴, ℕ, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ, < )))
4327, 31, 41, 42syl3anbrc 1323 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ (ℤ𝑥))
44 eluzfz 12719 . . . . . 6 ((𝑥 ∈ (ℤ‘1) ∧ sup(𝐴, ℕ, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4526, 43, 44syl2anc 576 . . . . 5 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4645ex 405 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (1...sup(𝐴, ℕ, < ))))
4746ssrdv 3864 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (1...sup(𝐴, ℕ, < )))
48 oveq2 6984 . . . . 5 (𝑛 = sup(𝐴, ℕ, < ) → (1...𝑛) = (1...sup(𝐴, ℕ, < )))
4948sseq2d 3889 . . . 4 (𝑛 = sup(𝐴, ℕ, < ) → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))))
5049rspcev 3535 . . 3 ((sup(𝐴, ℕ, < ) ∈ ℕ ∧ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
5123, 47, 50syl2anc 576 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
528, 51pm2.61dane 3055 1 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  wrex 3089  cin 3828  wss 3829  c0 4178  𝒫 cpw 4422   class class class wbr 4929   Or wor 5325  cfv 6188  (class class class)co 6976  Fincfn 8306  supcsup 8699  cr 10334  1c1 10336   < clt 10474  cle 10475  cn 11439  cz 11793  cuz 12058  ...cfz 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709
This theorem is referenced by:  esumfsup  30979  esumpcvgval  30987
  Copyright terms: Public domain W3C validator