| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suprub | Structured version Visualization version GIF version | ||
| Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.) |
| Ref | Expression |
|---|---|
| suprub | ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → 𝐴 ⊆ ℝ) | |
| 2 | 1 | sselda 3949 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 3 | suprcl 12150 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ) | |
| 4 | 3 | adantr 480 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ) |
| 5 | ltso 11261 | . . . . 5 ⊢ < Or ℝ | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → < Or ℝ) |
| 7 | sup3 12147 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 8 | 6, 7 | supub 9417 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵)) |
| 9 | 8 | imp 406 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ, < ) < 𝐵) |
| 10 | 2, 4, 9 | nltled 11331 | 1 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 Or wor 5548 supcsup 9398 ℝcr 11074 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: suprubd 12152 supaddc 12157 supadd 12158 supmul1 12159 supmullem1 12160 supmul 12162 suprubii 12165 suprzcl 12621 rpnnen1lem5 12947 supicc 13469 01sqrexlem4 15218 01sqrexlem7 15221 isercolllem2 15639 climsup 15643 fsumcvg3 15702 supcvg 15829 mertenslem1 15857 evth 24865 ivthlem2 25360 ivthlem3 25361 itg2mono 25661 esumpcvgval 34075 erdszelem8 35192 itg2addnclem2 37673 ftc1anclem7 37700 ftc1anc 37702 totbndbnd 37790 prdsbnd 37794 ubelsupr 45021 suprnmpt 45175 upbdrech 45310 ssfiunibd 45314 uzfissfz 45329 fourierdlem20 46132 fourierdlem31 46143 fourierdlem64 46175 fourierdlem79 46190 sge0isum 46432 hoicvr 46553 hoidmv1lelem1 46596 hoidmv1lelem3 46598 hoidmvlelem1 46600 hoidmvlelem4 46603 |
| Copyright terms: Public domain | W3C validator |