MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprub Structured version   Visualization version   GIF version

Theorem suprub 11866
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
suprub (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem suprub
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → 𝐴 ⊆ ℝ)
21sselda 3917 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → 𝐵 ∈ ℝ)
3 suprcl 11865 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
43adantr 480 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
5 ltso 10986 . . . . 5 < Or ℝ
65a1i 11 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → < Or ℝ)
7 sup3 11862 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
86, 7supub 9148 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (𝐵𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵))
98imp 406 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → ¬ sup(𝐴, ℝ, < ) < 𝐵)
102, 4, 9nltled 11055 1 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493  supcsup 9129  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  suprubd  11867  supaddc  11872  supadd  11873  supmul1  11874  supmullem1  11875  supmul  11877  suprubii  11880  suprzcl  12330  rpnnen1lem5  12650  supicc  13162  sqrlem4  14885  sqrlem7  14888  isercolllem2  15305  climsup  15309  fsumcvg3  15369  supcvg  15496  mertenslem1  15524  evth  24028  ivthlem2  24521  ivthlem3  24522  itg2mono  24823  esumpcvgval  31946  erdszelem8  33060  itg2addnclem2  35756  ftc1anclem7  35783  ftc1anc  35785  totbndbnd  35874  prdsbnd  35878  ubelsupr  42452  suprnmpt  42599  upbdrech  42734  ssfiunibd  42738  uzfissfz  42755  fourierdlem20  43558  fourierdlem31  43569  fourierdlem64  43601  fourierdlem79  43616  sge0isum  43855  hoicvr  43976  hoidmv1lelem1  44019  hoidmv1lelem3  44021  hoidmvlelem1  44023  hoidmvlelem4  44026
  Copyright terms: Public domain W3C validator