MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzub Structured version   Visualization version   GIF version

Theorem suprzub 12924
Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
suprzub ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem suprzub
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐴 ⊆ ℤ)
2 zssre 12566 . . . 4 ℤ ⊆ ℝ
31, 2sstrdi 3989 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐴 ⊆ ℝ)
4 simp3 1135 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵𝐴)
53, 4sseldd 3978 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ∈ ℝ)
64ne0d 4330 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐴 ≠ ∅)
7 simp2 1134 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
8 suprzcl2 12923 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)
91, 6, 7, 8syl3anc 1368 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → sup(𝐴, ℝ, < ) ∈ 𝐴)
103, 9sseldd 3978 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
11 ltso 11295 . . . . 5 < Or ℝ
1211a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → < Or ℝ)
13 zsupss 12922 . . . . . 6 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
141, 6, 7, 13syl3anc 1368 . . . . 5 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
15 ssrexv 4046 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
163, 14, 15sylc 65 . . . 4 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
1712, 16supub 9453 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → (𝐵𝐴 → ¬ sup(𝐴, ℝ, < ) < 𝐵))
184, 17mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → ¬ sup(𝐴, ℝ, < ) < 𝐵)
195, 10, 18nltled 11365 1 ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084  wcel 2098  wne 2934  wral 3055  wrex 3064  wss 3943  c0 4317   class class class wbr 5141   Or wor 5580  supcsup 9434  cr 11108   < clt 11249  cle 11250  cz 12559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824
This theorem is referenced by:  gcdcllem3  16446  pcprendvds  16779  pcpremul  16782  prmreclem1  16855  0ram  16959  gexex  19770  fourierdlem25  45402
  Copyright terms: Public domain W3C validator