![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ebits | Structured version Visualization version GIF version |
Description: The bits of a power of two. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
2ebits | β’ (π β β0 β (bitsβ(2βπ)) = {π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12281 | . . . . . . 7 β’ 2 β β | |
2 | 1 | a1i 11 | . . . . . 6 β’ (π β β0 β 2 β β) |
3 | id 22 | . . . . . 6 β’ (π β β0 β π β β0) | |
4 | 2, 3 | nnexpcld 14204 | . . . . 5 β’ (π β β0 β (2βπ) β β) |
5 | 4 | nncnd 12224 | . . . 4 β’ (π β β0 β (2βπ) β β) |
6 | oveq2 7413 | . . . . 5 β’ (π = π β (2βπ) = (2βπ)) | |
7 | 6 | sumsn 15688 | . . . 4 β’ ((π β β0 β§ (2βπ) β β) β Ξ£π β {π} (2βπ) = (2βπ)) |
8 | 5, 7 | mpdan 685 | . . 3 β’ (π β β0 β Ξ£π β {π} (2βπ) = (2βπ)) |
9 | 8 | fveq2d 6892 | . 2 β’ (π β β0 β (bitsβΞ£π β {π} (2βπ)) = (bitsβ(2βπ))) |
10 | snssi 4810 | . . . 4 β’ (π β β0 β {π} β β0) | |
11 | snfi 9040 | . . . 4 β’ {π} β Fin | |
12 | elfpw 9350 | . . . 4 β’ ({π} β (π« β0 β© Fin) β ({π} β β0 β§ {π} β Fin)) | |
13 | 10, 11, 12 | sylanblrc 590 | . . 3 β’ (π β β0 β {π} β (π« β0 β© Fin)) |
14 | bitsinv2 16380 | . . 3 β’ ({π} β (π« β0 β© Fin) β (bitsβΞ£π β {π} (2βπ)) = {π}) | |
15 | 13, 14 | syl 17 | . 2 β’ (π β β0 β (bitsβΞ£π β {π} (2βπ)) = {π}) |
16 | 9, 15 | eqtr3d 2774 | 1 β’ (π β β0 β (bitsβ(2βπ)) = {π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β© cin 3946 β wss 3947 π« cpw 4601 {csn 4627 βcfv 6540 (class class class)co 7405 Fincfn 8935 βcc 11104 βcn 12208 2c2 12263 β0cn0 12468 βcexp 14023 Ξ£csu 15628 bitscbits 16356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-dvds 16194 df-bits 16359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |