MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ebits Structured version   Visualization version   GIF version

Theorem 2ebits 15575
Description: The bits of a power of two. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
2ebits (𝑁 ∈ ℕ0 → (bits‘(2↑𝑁)) = {𝑁})

Proof of Theorem 2ebits
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 11448 . . . . . . 7 2 ∈ ℕ
21a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
3 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
42, 3nnexpcld 13351 . . . . 5 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
54nncnd 11392 . . . 4 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
6 oveq2 6930 . . . . 5 (𝑘 = 𝑁 → (2↑𝑘) = (2↑𝑁))
76sumsn 14882 . . . 4 ((𝑁 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℂ) → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
85, 7mpdan 677 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ {𝑁} (2↑𝑘) = (2↑𝑁))
98fveq2d 6450 . 2 (𝑁 ∈ ℕ0 → (bits‘Σ𝑘 ∈ {𝑁} (2↑𝑘)) = (bits‘(2↑𝑁)))
10 snssi 4570 . . . 4 (𝑁 ∈ ℕ0 → {𝑁} ⊆ ℕ0)
11 snfi 8326 . . . 4 {𝑁} ∈ Fin
12 elfpw 8556 . . . 4 ({𝑁} ∈ (𝒫 ℕ0 ∩ Fin) ↔ ({𝑁} ⊆ ℕ0 ∧ {𝑁} ∈ Fin))
1310, 11, 12sylanblrc 584 . . 3 (𝑁 ∈ ℕ0 → {𝑁} ∈ (𝒫 ℕ0 ∩ Fin))
14 bitsinv2 15571 . . 3 ({𝑁} ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑘 ∈ {𝑁} (2↑𝑘)) = {𝑁})
1513, 14syl 17 . 2 (𝑁 ∈ ℕ0 → (bits‘Σ𝑘 ∈ {𝑁} (2↑𝑘)) = {𝑁})
169, 15eqtr3d 2815 1 (𝑁 ∈ ℕ0 → (bits‘(2↑𝑁)) = {𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cin 3790  wss 3791  𝒫 cpw 4378  {csn 4397  cfv 6135  (class class class)co 6922  Fincfn 8241  cc 10270  cn 11374  2c2 11430  0cn0 11642  cexp 13178  Σcsu 14824  bitscbits 15547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-dvds 15388  df-bits 15550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator