![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ebits | Structured version Visualization version GIF version |
Description: The bits of a power of two. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
2ebits | β’ (π β β0 β (bitsβ(2βπ)) = {π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12321 | . . . . . . 7 β’ 2 β β | |
2 | 1 | a1i 11 | . . . . . 6 β’ (π β β0 β 2 β β) |
3 | id 22 | . . . . . 6 β’ (π β β0 β π β β0) | |
4 | 2, 3 | nnexpcld 14245 | . . . . 5 β’ (π β β0 β (2βπ) β β) |
5 | 4 | nncnd 12264 | . . . 4 β’ (π β β0 β (2βπ) β β) |
6 | oveq2 7432 | . . . . 5 β’ (π = π β (2βπ) = (2βπ)) | |
7 | 6 | sumsn 15730 | . . . 4 β’ ((π β β0 β§ (2βπ) β β) β Ξ£π β {π} (2βπ) = (2βπ)) |
8 | 5, 7 | mpdan 685 | . . 3 β’ (π β β0 β Ξ£π β {π} (2βπ) = (2βπ)) |
9 | 8 | fveq2d 6904 | . 2 β’ (π β β0 β (bitsβΞ£π β {π} (2βπ)) = (bitsβ(2βπ))) |
10 | snssi 4814 | . . . 4 β’ (π β β0 β {π} β β0) | |
11 | snfi 9073 | . . . 4 β’ {π} β Fin | |
12 | elfpw 9384 | . . . 4 β’ ({π} β (π« β0 β© Fin) β ({π} β β0 β§ {π} β Fin)) | |
13 | 10, 11, 12 | sylanblrc 588 | . . 3 β’ (π β β0 β {π} β (π« β0 β© Fin)) |
14 | bitsinv2 16423 | . . 3 β’ ({π} β (π« β0 β© Fin) β (bitsβΞ£π β {π} (2βπ)) = {π}) | |
15 | 13, 14 | syl 17 | . 2 β’ (π β β0 β (bitsβΞ£π β {π} (2βπ)) = {π}) |
16 | 9, 15 | eqtr3d 2769 | 1 β’ (π β β0 β (bitsβ(2βπ)) = {π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β© cin 3946 β wss 3947 π« cpw 4604 {csn 4630 βcfv 6551 (class class class)co 7424 Fincfn 8968 βcc 11142 βcn 12248 2c2 12303 β0cn0 12508 βcexp 14064 Ξ£csu 15670 bitscbits 16399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-disj 5116 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-oadd 8495 df-er 8729 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-oi 9539 df-dju 9930 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-xnn0 12581 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-fzo 13666 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-clim 15470 df-sum 15671 df-dvds 16237 df-bits 16402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |