MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosmul Structured version   Visualization version   GIF version

Theorem cosmul 16170
Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 16162 and cossub 16166. (Contributed by David A. Wheeler, 26-May-2015.)
Assertion
Ref Expression
cosmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐴 + 𝐵))) / 2))

Proof of Theorem cosmul
StepHypRef Expression
1 coscl 16124 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2 coscl 16124 . . . . 5 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
3 mulcl 11233 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
41, 2, 3syl2an 594 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
5 2cnne0 12468 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
6 3anass 1092 . . . 4 ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) ↔ (((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)))
74, 5, 6sylanblrc 588 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
8 divcan3 11940 . . 3 ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · ((cos‘𝐴) · (cos‘𝐵))) / 2) = ((cos‘𝐴) · (cos‘𝐵)))
97, 8syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((cos‘𝐴) · (cos‘𝐵))) / 2) = ((cos‘𝐴) · (cos‘𝐵)))
10 sincl 16123 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
11 sincl 16123 . . . . . 6 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
12 mulcl 11233 . . . . . 6 (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
1310, 11, 12syl2an 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
144, 13, 4ppncand 11652 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) + (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (((cos‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (cos‘𝐵))))
15 cossub 16166 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))))
16 cosadd 16162 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1715, 16oveq12d 7434 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(𝐴𝐵)) + (cos‘(𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) + (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))))
1842timesd 12501 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((cos‘𝐴) · (cos‘𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (cos‘𝐵))))
1914, 17, 183eqtr4rd 2777 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((cos‘𝐴) · (cos‘𝐵))) = ((cos‘(𝐴𝐵)) + (cos‘(𝐴 + 𝐵))))
2019oveq1d 7431 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((cos‘𝐴) · (cos‘𝐵))) / 2) = (((cos‘(𝐴𝐵)) + (cos‘(𝐴 + 𝐵))) / 2))
219, 20eqtr3d 2768 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐴 + 𝐵))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  cfv 6546  (class class class)co 7416  cc 11147  0cc0 11149   + caddc 11152   · cmul 11154  cmin 11485   / cdiv 11912  2c2 12313  sincsin 16060  cosccos 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-ico 13378  df-fz 13533  df-fzo 13676  df-fl 13806  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-ef 16064  df-sin 16066  df-cos 16067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator