MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoix Structured version   Visualization version   GIF version

Theorem nmoix 24654
Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoix (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))

Proof of Theorem nmoix
StepHypRef Expression
1 nmofval.1 . . . . . . 7 𝑁 = (𝑆 normOp 𝑇)
21isnghm2 24649 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
32biimpar 477 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
4 nmoi.2 . . . . . 6 𝑉 = (Base‘𝑆)
5 nmoi.3 . . . . . 6 𝐿 = (norm‘𝑆)
6 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
71, 4, 5, 6nmoi 24653 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
83, 7sylan 580 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
98an32s 652 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
10 id 22 . . . 4 ((𝑁𝐹) ∈ ℝ → (𝑁𝐹) ∈ ℝ)
114, 5nmcl 24541 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
12113ad2antl1 1186 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
13 rexmul 13180 . . . 4 (((𝑁𝐹) ∈ ℝ ∧ (𝐿𝑋) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
1410, 12, 13syl2anr 597 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
159, 14breqtrrd 5123 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
16 fveq2 6831 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐹𝑋) = (𝐹‘(0g𝑆)))
1716fveq2d 6835 . . . . . 6 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
18 fveq2 6831 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
1918oveq2d 7371 . . . . . 6 (𝑋 = (0g𝑆) → (+∞ ·e (𝐿𝑋)) = (+∞ ·e (𝐿‘(0g𝑆))))
2017, 19breq12d 5108 . . . . 5 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆)))))
21 simpl2 1193 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
22 eqid 2733 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
234, 22ghmf 19142 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2423ffvelcdmda 7026 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25243ad2antl3 1188 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2622, 6nmcl 24541 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2721, 25, 26syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928rexrd 11172 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
30 pnfge 13039 . . . . . . 7 ((𝑀‘(𝐹𝑋)) ∈ ℝ* → (𝑀‘(𝐹𝑋)) ≤ +∞)
3129, 30syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ +∞)
32 simp1 1136 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ NrmGrp)
33 eqid 2733 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
344, 5, 33nmrpcl 24545 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
35343expa 1118 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
3632, 35sylanl1 680 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
37 rpxr 12910 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → (𝐿𝑋) ∈ ℝ*)
38 rpgt0 12913 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → 0 < (𝐿𝑋))
39 xmulpnf2 13184 . . . . . . . 8 (((𝐿𝑋) ∈ ℝ* ∧ 0 < (𝐿𝑋)) → (+∞ ·e (𝐿𝑋)) = +∞)
4037, 38, 39syl2anc 584 . . . . . . 7 ((𝐿𝑋) ∈ ℝ+ → (+∞ ·e (𝐿𝑋)) = +∞)
4136, 40syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (+∞ ·e (𝐿𝑋)) = +∞)
4231, 41breqtrrd 5123 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
43 0le0 12236 . . . . . 6 0 ≤ 0
44 simpl3 1194 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2733 . . . . . . . . . . 11 (0g𝑇) = (0g𝑇)
4633, 45ghmid 19144 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
4744, 46syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
4847fveq2d 6835 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
496, 45nm0 24554 . . . . . . . . 9 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5021, 49syl 17 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
5148, 50eqtrd 2768 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
52 simpl1 1192 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
535, 33nm0 24554 . . . . . . . . . 10 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
5452, 53syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
5554oveq2d 7371 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = (+∞ ·e 0))
56 pnfxr 11176 . . . . . . . . 9 +∞ ∈ ℝ*
57 xmul01 13176 . . . . . . . . 9 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
5856, 57ax-mp 5 . . . . . . . 8 (+∞ ·e 0) = 0
5955, 58eqtrdi 2784 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = 0)
6051, 59breq12d 5108 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))) ↔ 0 ≤ 0))
6143, 60mpbiri 258 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))))
6220, 42, 61pm2.61ne 3015 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
6362adantr 480 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
64 simpr 484 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑁𝐹) = +∞)
6564oveq1d 7370 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → ((𝑁𝐹) ·e (𝐿𝑋)) = (+∞ ·e (𝐿𝑋)))
6663, 65breqtrrd 5123 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
671nmocl 24645 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
681nmoge0 24646 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
69 ge0nemnf 13082 . . . . . 6 (((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)) → (𝑁𝐹) ≠ -∞)
7067, 68, 69syl2anc 584 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ≠ -∞)
7167, 70jca 511 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞))
72 xrnemnf 13026 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞) ↔ ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7371, 72sylib 218 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7473adantr 480 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7515, 66, 74mpjaodan 960 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11015  0cc0 11016   · cmul 11021  +∞cpnf 11153  -∞cmnf 11154  *cxr 11155   < clt 11156  cle 11157  +crp 12900   ·e cxmu 13020  Basecbs 17130  0gc0g 17353   GrpHom cghm 19134  normcnm 24501  NrmGrpcngp 24502   normOp cnmo 24630   NGHom cnghm 24631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ico 13261  df-0g 17355  df-topgen 17357  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-ghm 19135  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-xms 24245  df-ms 24246  df-nm 24507  df-ngp 24508  df-nmo 24633  df-nghm 24634
This theorem is referenced by:  nmoi2  24655  nmoleub2lem  25051
  Copyright terms: Public domain W3C validator