MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoix Structured version   Visualization version   GIF version

Theorem nmoix 22752
Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoix (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))

Proof of Theorem nmoix
StepHypRef Expression
1 nmofval.1 . . . . . . 7 𝑁 = (𝑆 normOp 𝑇)
21isnghm2 22747 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
32biimpar 463 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
4 nmoi.2 . . . . . 6 𝑉 = (Base‘𝑆)
5 nmoi.3 . . . . . 6 𝐿 = (norm‘𝑆)
6 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
71, 4, 5, 6nmoi 22751 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
83, 7sylan 569 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
98an32s 631 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
10 id 22 . . . 4 ((𝑁𝐹) ∈ ℝ → (𝑁𝐹) ∈ ℝ)
114, 5nmcl 22639 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
12113ad2antl1 1200 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
13 rexmul 12305 . . . 4 (((𝑁𝐹) ∈ ℝ ∧ (𝐿𝑋) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
1410, 12, 13syl2anr 584 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
159, 14breqtrrd 4815 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
16 fveq2 6333 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐹𝑋) = (𝐹‘(0g𝑆)))
1716fveq2d 6337 . . . . . 6 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
18 fveq2 6333 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
1918oveq2d 6811 . . . . . 6 (𝑋 = (0g𝑆) → (+∞ ·e (𝐿𝑋)) = (+∞ ·e (𝐿‘(0g𝑆))))
2017, 19breq12d 4800 . . . . 5 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆)))))
21 simpl2 1229 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
22 eqid 2771 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
234, 22ghmf 17871 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2423ffvelrnda 6504 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25243ad2antl3 1202 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2622, 6nmcl 22639 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2721, 25, 26syl2anc 573 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 466 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928rexrd 10294 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
30 pnfge 12168 . . . . . . 7 ((𝑀‘(𝐹𝑋)) ∈ ℝ* → (𝑀‘(𝐹𝑋)) ≤ +∞)
3129, 30syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ +∞)
32 simp1 1130 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ NrmGrp)
33 eqid 2771 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
344, 5, 33nmrpcl 22643 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
35343expa 1111 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
3632, 35sylanl1 659 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
37 rpxr 12042 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → (𝐿𝑋) ∈ ℝ*)
38 rpgt0 12046 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → 0 < (𝐿𝑋))
39 xmulpnf2 12309 . . . . . . . 8 (((𝐿𝑋) ∈ ℝ* ∧ 0 < (𝐿𝑋)) → (+∞ ·e (𝐿𝑋)) = +∞)
4037, 38, 39syl2anc 573 . . . . . . 7 ((𝐿𝑋) ∈ ℝ+ → (+∞ ·e (𝐿𝑋)) = +∞)
4136, 40syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (+∞ ·e (𝐿𝑋)) = +∞)
4231, 41breqtrrd 4815 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
43 0le0 11315 . . . . . 6 0 ≤ 0
44 simpl3 1231 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2771 . . . . . . . . . . 11 (0g𝑇) = (0g𝑇)
4633, 45ghmid 17873 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
4744, 46syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
4847fveq2d 6337 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
496, 45nm0 22652 . . . . . . . . 9 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5021, 49syl 17 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
5148, 50eqtrd 2805 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
52 simpl1 1227 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
535, 33nm0 22652 . . . . . . . . . 10 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
5452, 53syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
5554oveq2d 6811 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = (+∞ ·e 0))
56 pnfxr 10297 . . . . . . . . 9 +∞ ∈ ℝ*
57 xmul01 12301 . . . . . . . . 9 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
5856, 57ax-mp 5 . . . . . . . 8 (+∞ ·e 0) = 0
5955, 58syl6eq 2821 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = 0)
6051, 59breq12d 4800 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))) ↔ 0 ≤ 0))
6143, 60mpbiri 248 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))))
6220, 42, 61pm2.61ne 3028 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
6362adantr 466 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
64 simpr 471 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑁𝐹) = +∞)
6564oveq1d 6810 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → ((𝑁𝐹) ·e (𝐿𝑋)) = (+∞ ·e (𝐿𝑋)))
6663, 65breqtrrd 4815 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
671nmocl 22743 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
681nmoge0 22744 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
69 ge0nemnf 12208 . . . . . 6 (((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)) → (𝑁𝐹) ≠ -∞)
7067, 68, 69syl2anc 573 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ≠ -∞)
7167, 70jca 501 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞))
72 xrnemnf 12155 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞) ↔ ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7371, 72sylib 208 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7473adantr 466 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7515, 66, 74mpjaodan 943 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  cfv 6030  (class class class)co 6795  cr 10140  0cc0 10141   · cmul 10146  +∞cpnf 10276  -∞cmnf 10277  *cxr 10278   < clt 10279  cle 10280  +crp 12034   ·e cxmu 12149  Basecbs 16063  0gc0g 16307   GrpHom cghm 17864  normcnm 22600  NrmGrpcngp 22601   normOp cnmo 22728   NGHom cnghm 22729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-map 8014  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-n0 11499  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ico 12385  df-0g 16309  df-topgen 16311  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-ghm 17865  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-xms 22344  df-ms 22345  df-nm 22606  df-ngp 22607  df-nmo 22731  df-nghm 22732
This theorem is referenced by:  nmoi2  22753  nmoleub2lem  23132
  Copyright terms: Public domain W3C validator