MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoix Structured version   Visualization version   GIF version

Theorem nmoix 23475
Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoix (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))

Proof of Theorem nmoix
StepHypRef Expression
1 nmofval.1 . . . . . . 7 𝑁 = (𝑆 normOp 𝑇)
21isnghm2 23470 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
32biimpar 481 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
4 nmoi.2 . . . . . 6 𝑉 = (Base‘𝑆)
5 nmoi.3 . . . . . 6 𝐿 = (norm‘𝑆)
6 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
71, 4, 5, 6nmoi 23474 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
83, 7sylan 583 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
98an32s 652 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
10 id 22 . . . 4 ((𝑁𝐹) ∈ ℝ → (𝑁𝐹) ∈ ℝ)
114, 5nmcl 23362 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
12113ad2antl1 1186 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
13 rexmul 12740 . . . 4 (((𝑁𝐹) ∈ ℝ ∧ (𝐿𝑋) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
1410, 12, 13syl2anr 600 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
159, 14breqtrrd 5055 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
16 fveq2 6668 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐹𝑋) = (𝐹‘(0g𝑆)))
1716fveq2d 6672 . . . . . 6 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
18 fveq2 6668 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
1918oveq2d 7180 . . . . . 6 (𝑋 = (0g𝑆) → (+∞ ·e (𝐿𝑋)) = (+∞ ·e (𝐿‘(0g𝑆))))
2017, 19breq12d 5040 . . . . 5 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆)))))
21 simpl2 1193 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
22 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
234, 22ghmf 18473 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2423ffvelrnda 6855 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25243ad2antl3 1188 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2622, 6nmcl 23362 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2721, 25, 26syl2anc 587 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 484 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928rexrd 10762 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
30 pnfge 12601 . . . . . . 7 ((𝑀‘(𝐹𝑋)) ∈ ℝ* → (𝑀‘(𝐹𝑋)) ≤ +∞)
3129, 30syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ +∞)
32 simp1 1137 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ NrmGrp)
33 eqid 2738 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
344, 5, 33nmrpcl 23366 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
35343expa 1119 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
3632, 35sylanl1 680 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
37 rpxr 12474 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → (𝐿𝑋) ∈ ℝ*)
38 rpgt0 12477 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → 0 < (𝐿𝑋))
39 xmulpnf2 12744 . . . . . . . 8 (((𝐿𝑋) ∈ ℝ* ∧ 0 < (𝐿𝑋)) → (+∞ ·e (𝐿𝑋)) = +∞)
4037, 38, 39syl2anc 587 . . . . . . 7 ((𝐿𝑋) ∈ ℝ+ → (+∞ ·e (𝐿𝑋)) = +∞)
4136, 40syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (+∞ ·e (𝐿𝑋)) = +∞)
4231, 41breqtrrd 5055 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
43 0le0 11810 . . . . . 6 0 ≤ 0
44 simpl3 1194 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2738 . . . . . . . . . . 11 (0g𝑇) = (0g𝑇)
4633, 45ghmid 18475 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
4744, 46syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
4847fveq2d 6672 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
496, 45nm0 23375 . . . . . . . . 9 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5021, 49syl 17 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
5148, 50eqtrd 2773 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
52 simpl1 1192 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
535, 33nm0 23375 . . . . . . . . . 10 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
5452, 53syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
5554oveq2d 7180 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = (+∞ ·e 0))
56 pnfxr 10766 . . . . . . . . 9 +∞ ∈ ℝ*
57 xmul01 12736 . . . . . . . . 9 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
5856, 57ax-mp 5 . . . . . . . 8 (+∞ ·e 0) = 0
5955, 58eqtrdi 2789 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = 0)
6051, 59breq12d 5040 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))) ↔ 0 ≤ 0))
6143, 60mpbiri 261 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))))
6220, 42, 61pm2.61ne 3019 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
6362adantr 484 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
64 simpr 488 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑁𝐹) = +∞)
6564oveq1d 7179 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → ((𝑁𝐹) ·e (𝐿𝑋)) = (+∞ ·e (𝐿𝑋)))
6663, 65breqtrrd 5055 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
671nmocl 23466 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
681nmoge0 23467 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
69 ge0nemnf 12642 . . . . . 6 (((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)) → (𝑁𝐹) ≠ -∞)
7067, 68, 69syl2anc 587 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ≠ -∞)
7167, 70jca 515 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞))
72 xrnemnf 12588 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞) ↔ ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7371, 72sylib 221 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7473adantr 484 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7515, 66, 74mpjaodan 958 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2113  wne 2934   class class class wbr 5027  cfv 6333  (class class class)co 7164  cr 10607  0cc0 10608   · cmul 10613  +∞cpnf 10743  -∞cmnf 10744  *cxr 10745   < clt 10746  cle 10747  +crp 12465   ·e cxmu 12582  Basecbs 16579  0gc0g 16809   GrpHom cghm 18466  normcnm 23322  NrmGrpcngp 23323   normOp cnmo 23451   NGHom cnghm 23452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-n0 11970  df-z 12056  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ico 12820  df-0g 16811  df-topgen 16813  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-grp 18215  df-ghm 18467  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-xms 23066  df-ms 23067  df-nm 23328  df-ngp 23329  df-nmo 23454  df-nghm 23455
This theorem is referenced by:  nmoi2  23476  nmoleub2lem  23859
  Copyright terms: Public domain W3C validator