MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoix Structured version   Visualization version   GIF version

Theorem nmoix 24750
Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoix (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))

Proof of Theorem nmoix
StepHypRef Expression
1 nmofval.1 . . . . . . 7 𝑁 = (𝑆 normOp 𝑇)
21isnghm2 24745 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
32biimpar 477 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
4 nmoi.2 . . . . . 6 𝑉 = (Base‘𝑆)
5 nmoi.3 . . . . . 6 𝐿 = (norm‘𝑆)
6 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
71, 4, 5, 6nmoi 24749 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
83, 7sylan 580 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
98an32s 652 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
10 id 22 . . . 4 ((𝑁𝐹) ∈ ℝ → (𝑁𝐹) ∈ ℝ)
114, 5nmcl 24629 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
12113ad2antl1 1186 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
13 rexmul 13313 . . . 4 (((𝑁𝐹) ∈ ℝ ∧ (𝐿𝑋) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
1410, 12, 13syl2anr 597 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
159, 14breqtrrd 5171 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
16 fveq2 6906 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐹𝑋) = (𝐹‘(0g𝑆)))
1716fveq2d 6910 . . . . . 6 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
18 fveq2 6906 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
1918oveq2d 7447 . . . . . 6 (𝑋 = (0g𝑆) → (+∞ ·e (𝐿𝑋)) = (+∞ ·e (𝐿‘(0g𝑆))))
2017, 19breq12d 5156 . . . . 5 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆)))))
21 simpl2 1193 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
22 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
234, 22ghmf 19238 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2423ffvelcdmda 7104 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25243ad2antl3 1188 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2622, 6nmcl 24629 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2721, 25, 26syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928rexrd 11311 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
30 pnfge 13172 . . . . . . 7 ((𝑀‘(𝐹𝑋)) ∈ ℝ* → (𝑀‘(𝐹𝑋)) ≤ +∞)
3129, 30syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ +∞)
32 simp1 1137 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ NrmGrp)
33 eqid 2737 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
344, 5, 33nmrpcl 24633 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
35343expa 1119 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
3632, 35sylanl1 680 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
37 rpxr 13044 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → (𝐿𝑋) ∈ ℝ*)
38 rpgt0 13047 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → 0 < (𝐿𝑋))
39 xmulpnf2 13317 . . . . . . . 8 (((𝐿𝑋) ∈ ℝ* ∧ 0 < (𝐿𝑋)) → (+∞ ·e (𝐿𝑋)) = +∞)
4037, 38, 39syl2anc 584 . . . . . . 7 ((𝐿𝑋) ∈ ℝ+ → (+∞ ·e (𝐿𝑋)) = +∞)
4136, 40syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (+∞ ·e (𝐿𝑋)) = +∞)
4231, 41breqtrrd 5171 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
43 0le0 12367 . . . . . 6 0 ≤ 0
44 simpl3 1194 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2737 . . . . . . . . . . 11 (0g𝑇) = (0g𝑇)
4633, 45ghmid 19240 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
4744, 46syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
4847fveq2d 6910 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
496, 45nm0 24642 . . . . . . . . 9 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5021, 49syl 17 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
5148, 50eqtrd 2777 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
52 simpl1 1192 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
535, 33nm0 24642 . . . . . . . . . 10 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
5452, 53syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
5554oveq2d 7447 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = (+∞ ·e 0))
56 pnfxr 11315 . . . . . . . . 9 +∞ ∈ ℝ*
57 xmul01 13309 . . . . . . . . 9 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
5856, 57ax-mp 5 . . . . . . . 8 (+∞ ·e 0) = 0
5955, 58eqtrdi 2793 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = 0)
6051, 59breq12d 5156 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))) ↔ 0 ≤ 0))
6143, 60mpbiri 258 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))))
6220, 42, 61pm2.61ne 3027 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
6362adantr 480 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
64 simpr 484 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑁𝐹) = +∞)
6564oveq1d 7446 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → ((𝑁𝐹) ·e (𝐿𝑋)) = (+∞ ·e (𝐿𝑋)))
6663, 65breqtrrd 5171 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
671nmocl 24741 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
681nmoge0 24742 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
69 ge0nemnf 13215 . . . . . 6 (((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)) → (𝑁𝐹) ≠ -∞)
7067, 68, 69syl2anc 584 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ≠ -∞)
7167, 70jca 511 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞))
72 xrnemnf 13159 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞) ↔ ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7371, 72sylib 218 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7473adantr 480 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7515, 66, 74mpjaodan 961 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  +crp 13034   ·e cxmu 13153  Basecbs 17247  0gc0g 17484   GrpHom cghm 19230  normcnm 24589  NrmGrpcngp 24590   normOp cnmo 24726   NGHom cnghm 24727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-0g 17486  df-topgen 17488  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-ghm 19231  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-nmo 24729  df-nghm 24730
This theorem is referenced by:  nmoi2  24751  nmoleub2lem  25147
  Copyright terms: Public domain W3C validator