MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsre Structured version   Visualization version   GIF version

Theorem metdsre 22876
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsre ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4079 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
2 metxmet 22359 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 22871 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
52, 4sylan 569 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
65adantr 466 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶(0[,]+∞))
76ffnd 6185 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹 Fn 𝑋)
85adantr 466 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
9 simprr 756 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑤𝑋)
108, 9ffvelrnd 6505 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ (0[,]+∞))
11 elxrge0 12488 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
1211simplbi 485 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → (𝐹𝑤) ∈ ℝ*)
1310, 12syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ*)
14 simpll 750 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐷 ∈ (Met‘𝑋))
15 simpr 471 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
1615sselda 3752 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
1716adantrr 696 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑧𝑋)
18 metcl 22357 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ)
1914, 17, 9, 18syl3anc 1476 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝑧𝐷𝑤) ∈ ℝ)
2011simprbi 484 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
2110, 20syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 0 ≤ (𝐹𝑤))
223metdsle 22875 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
232, 22sylanl1 659 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
24 xrrege0 12210 . . . . . . . . 9 ((((𝐹𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹𝑤) ∧ (𝐹𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹𝑤) ∈ ℝ)
2513, 19, 21, 23, 24syl22anc 1477 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ)
2625anassrs 453 . . . . . . 7 ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ ℝ)
2726ralrimiva 3115 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ)
28 ffnfv 6533 . . . . . 6 (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ))
297, 27, 28sylanbrc 572 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶ℝ)
3029ex 397 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑧𝑆𝐹:𝑋⟶ℝ))
3130exlimdv 2013 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑧 𝑧𝑆𝐹:𝑋⟶ℝ))
321, 31syl5bi 232 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ))
33323impia 1109 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  wss 3723  c0 4063   class class class wbr 4787  cmpt 4864  ran crn 5251   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6796  infcinf 8507  cr 10141  0cc0 10142  +∞cpnf 10277  *cxr 10279   < clt 10280  cle 10281  [,]cicc 12383  ∞Metcxmt 19946  Metcme 19947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-ec 7902  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-2 11285  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956
This theorem is referenced by:  metdscn2  22880  lebnumlem1  22980  lebnumlem3  22982
  Copyright terms: Public domain W3C validator