MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsre Structured version   Visualization version   GIF version

Theorem metdsre 24749
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsre ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4319 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
2 metxmet 24229 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 24744 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
52, 4sylan 580 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
65adantr 480 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶(0[,]+∞))
76ffnd 6692 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹 Fn 𝑋)
85adantr 480 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
9 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑤𝑋)
108, 9ffvelcdmd 7060 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ (0[,]+∞))
11 eliccxr 13403 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → (𝐹𝑤) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ*)
13 simpll 766 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐷 ∈ (Met‘𝑋))
14 simpr 484 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
1514sselda 3949 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
1615adantrr 717 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑧𝑋)
17 metcl 24227 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ)
1813, 16, 9, 17syl3anc 1373 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝑧𝐷𝑤) ∈ ℝ)
19 elxrge0 13425 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
2019simprbi 496 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
2110, 20syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 0 ≤ (𝐹𝑤))
223metdsle 24748 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
232, 22sylanl1 680 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
24 xrrege0 13141 . . . . . . . . 9 ((((𝐹𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹𝑤) ∧ (𝐹𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹𝑤) ∈ ℝ)
2512, 18, 21, 23, 24syl22anc 838 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ)
2625anassrs 467 . . . . . . 7 ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ ℝ)
2726ralrimiva 3126 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ)
28 ffnfv 7094 . . . . . 6 (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ))
297, 27, 28sylanbrc 583 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶ℝ)
3029ex 412 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑧𝑆𝐹:𝑋⟶ℝ))
3130exlimdv 1933 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑧 𝑧𝑆𝐹:𝑋⟶ℝ))
321, 31biimtrid 242 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ))
33323impia 1117 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  [,]cicc 13316  ∞Metcxmet 21256  Metcmet 21257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-ec 8676  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-2 12256  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266
This theorem is referenced by:  metdscn2  24753  lebnumlem1  24867  lebnumlem3  24869
  Copyright terms: Public domain W3C validator