MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsre Structured version   Visualization version   GIF version

Theorem metdsre 23449
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsre ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4291 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
2 metxmet 22932 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 23444 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
52, 4sylan 583 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
65adantr 484 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶(0[,]+∞))
76ffnd 6498 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹 Fn 𝑋)
85adantr 484 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
9 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑤𝑋)
108, 9ffvelrnd 6835 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ (0[,]+∞))
11 eliccxr 12813 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → (𝐹𝑤) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ*)
13 simpll 766 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐷 ∈ (Met‘𝑋))
14 simpr 488 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
1514sselda 3951 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
1615adantrr 716 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑧𝑋)
17 metcl 22930 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ)
1813, 16, 9, 17syl3anc 1368 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝑧𝐷𝑤) ∈ ℝ)
19 elxrge0 12835 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
2019simprbi 500 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
2110, 20syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 0 ≤ (𝐹𝑤))
223metdsle 23448 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
232, 22sylanl1 679 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
24 xrrege0 12555 . . . . . . . . 9 ((((𝐹𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹𝑤) ∧ (𝐹𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹𝑤) ∈ ℝ)
2512, 18, 21, 23, 24syl22anc 837 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ)
2625anassrs 471 . . . . . . 7 ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ ℝ)
2726ralrimiva 3176 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ)
28 ffnfv 6865 . . . . . 6 (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ))
297, 27, 28sylanbrc 586 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶ℝ)
3029ex 416 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑧𝑆𝐹:𝑋⟶ℝ))
3130exlimdv 1935 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑧 𝑧𝑆𝐹:𝑋⟶ℝ))
321, 31syl5bi 245 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ))
33323impia 1114 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wne 3013  wral 3132  wss 3918  c0 4274   class class class wbr 5049  cmpt 5129  ran crn 5539   Fn wfn 6333  wf 6334  cfv 6338  (class class class)co 7140  infcinf 8891  cr 10523  0cc0 10524  +∞cpnf 10659  *cxr 10661   < clt 10662  cle 10663  [,]cicc 12729  ∞Metcxmet 20518  Metcmet 20519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-po 5457  df-so 5458  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7674  df-2nd 7675  df-er 8274  df-ec 8276  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-inf 8893  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-psmet 20525  df-xmet 20526  df-met 20527  df-bl 20528
This theorem is referenced by:  metdscn2  23453  lebnumlem1  23557  lebnumlem3  23559
  Copyright terms: Public domain W3C validator