![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsre | Structured version Visualization version GIF version |
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsre | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4359 | . . 3 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝑆) | |
2 | metxmet 24360 | . . . . . . . . 9 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 24884 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 2, 4 | sylan 580 | . . . . . . . 8 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶(0[,]+∞)) |
7 | 6 | ffnd 6738 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹 Fn 𝑋) |
8 | 5 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐹:𝑋⟶(0[,]+∞)) |
9 | simprr 773 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) | |
10 | 8, 9 | ffvelcdmd 7105 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
11 | eliccxr 13472 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → (𝐹‘𝑤) ∈ ℝ*) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ*) |
13 | simpll 767 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
14 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
15 | 14 | sselda 3995 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
16 | 15 | adantrr 717 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
17 | metcl 24358 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧𝐷𝑤) ∈ ℝ) | |
18 | 13, 16, 9, 17 | syl3anc 1370 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝑧𝐷𝑤) ∈ ℝ) |
19 | elxrge0 13494 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑤))) | |
20 | 19 | simprbi 496 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
21 | 10, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 0 ≤ (𝐹‘𝑤)) |
22 | 3 | metdsle 24888 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
23 | 2, 22 | sylanl1 680 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
24 | xrrege0 13213 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹‘𝑤) ∈ ℝ) | |
25 | 12, 18, 21, 23, 24 | syl22anc 839 | . . . . . . . 8 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ) |
26 | 25 | anassrs 467 | . . . . . . 7 ⊢ ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ℝ) |
27 | 26 | ralrimiva 3144 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ) |
28 | ffnfv 7139 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ)) | |
29 | 7, 27, 28 | sylanbrc 583 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶ℝ) |
30 | 29 | ex 412 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
31 | 30 | exlimdv 1931 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑧 𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
32 | 1, 31 | biimtrid 242 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ)) |
33 | 32 | 3impia 1116 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 infcinf 9479 ℝcr 11152 0cc0 11153 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 [,]cicc 13387 ∞Metcxmet 21367 Metcmet 21368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-ec 8746 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 |
This theorem is referenced by: metdscn2 24893 lebnumlem1 25007 lebnumlem3 25009 |
Copyright terms: Public domain | W3C validator |