MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsre Structured version   Visualization version   GIF version

Theorem metdsre 24894
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsre ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4376 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
2 metxmet 24365 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 24889 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
52, 4sylan 579 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
65adantr 480 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶(0[,]+∞))
76ffnd 6748 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹 Fn 𝑋)
85adantr 480 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
9 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑤𝑋)
108, 9ffvelcdmd 7119 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ (0[,]+∞))
11 eliccxr 13495 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → (𝐹𝑤) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ*)
13 simpll 766 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐷 ∈ (Met‘𝑋))
14 simpr 484 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
1514sselda 4008 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
1615adantrr 716 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑧𝑋)
17 metcl 24363 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ)
1813, 16, 9, 17syl3anc 1371 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝑧𝐷𝑤) ∈ ℝ)
19 elxrge0 13517 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
2019simprbi 496 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
2110, 20syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 0 ≤ (𝐹𝑤))
223metdsle 24893 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
232, 22sylanl1 679 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
24 xrrege0 13236 . . . . . . . . 9 ((((𝐹𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹𝑤) ∧ (𝐹𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹𝑤) ∈ ℝ)
2512, 18, 21, 23, 24syl22anc 838 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ)
2625anassrs 467 . . . . . . 7 ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ ℝ)
2726ralrimiva 3152 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ)
28 ffnfv 7153 . . . . . 6 (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ))
297, 27, 28sylanbrc 582 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶ℝ)
3029ex 412 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑧𝑆𝐹:𝑋⟶ℝ))
3130exlimdv 1932 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑧 𝑧𝑆𝐹:𝑋⟶ℝ))
321, 31biimtrid 242 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ))
33323impia 1117 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  [,]cicc 13410  ∞Metcxmet 21372  Metcmet 21373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-ec 8765  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382
This theorem is referenced by:  metdscn2  24898  lebnumlem1  25012  lebnumlem3  25014
  Copyright terms: Public domain W3C validator