| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metdsre | Structured version Visualization version GIF version | ||
| Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| metdsre | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4319 | . . 3 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝑆) | |
| 2 | metxmet 24229 | . . . . . . . . 9 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 4 | 3 | metdsf 24744 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | 2, 4 | sylan 580 | . . . . . . . 8 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶(0[,]+∞)) |
| 7 | 6 | ffnd 6692 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹 Fn 𝑋) |
| 8 | 5 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 9 | simprr 772 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) | |
| 10 | 8, 9 | ffvelcdmd 7060 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
| 11 | eliccxr 13403 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → (𝐹‘𝑤) ∈ ℝ*) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ*) |
| 13 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
| 14 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
| 15 | 14 | sselda 3949 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
| 16 | 15 | adantrr 717 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 17 | metcl 24227 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧𝐷𝑤) ∈ ℝ) | |
| 18 | 13, 16, 9, 17 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝑧𝐷𝑤) ∈ ℝ) |
| 19 | elxrge0 13425 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑤))) | |
| 20 | 19 | simprbi 496 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
| 21 | 10, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 0 ≤ (𝐹‘𝑤)) |
| 22 | 3 | metdsle 24748 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
| 23 | 2, 22 | sylanl1 680 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
| 24 | xrrege0 13141 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹‘𝑤) ∈ ℝ) | |
| 25 | 12, 18, 21, 23, 24 | syl22anc 838 | . . . . . . . 8 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ) |
| 26 | 25 | anassrs 467 | . . . . . . 7 ⊢ ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ℝ) |
| 27 | 26 | ralrimiva 3126 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ) |
| 28 | ffnfv 7094 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ)) | |
| 29 | 7, 27, 28 | sylanbrc 583 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶ℝ) |
| 30 | 29 | ex 412 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
| 31 | 30 | exlimdv 1933 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑧 𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
| 32 | 1, 31 | biimtrid 242 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ)) |
| 33 | 32 | 3impia 1117 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 infcinf 9399 ℝcr 11074 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,]cicc 13316 ∞Metcxmet 21256 Metcmet 21257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-ec 8676 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-2 12256 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 |
| This theorem is referenced by: metdscn2 24753 lebnumlem1 24867 lebnumlem3 24869 |
| Copyright terms: Public domain | W3C validator |