| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metdsre | Structured version Visualization version GIF version | ||
| Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| metdsre | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4312 | . . 3 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝑆) | |
| 2 | metxmet 24198 | . . . . . . . . 9 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | metdscn.f | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 4 | 3 | metdsf 24713 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | 2, 4 | sylan 580 | . . . . . . . 8 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶(0[,]+∞)) |
| 7 | 6 | ffnd 6671 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹 Fn 𝑋) |
| 8 | 5 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 9 | simprr 772 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) | |
| 10 | 8, 9 | ffvelcdmd 7039 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ (0[,]+∞)) |
| 11 | eliccxr 13372 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → (𝐹‘𝑤) ∈ ℝ*) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ*) |
| 13 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝐷 ∈ (Met‘𝑋)) | |
| 14 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
| 15 | 14 | sselda 3943 | . . . . . . . . . . 11 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
| 16 | 15 | adantrr 717 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 17 | metcl 24196 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧𝐷𝑤) ∈ ℝ) | |
| 18 | 13, 16, 9, 17 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝑧𝐷𝑤) ∈ ℝ) |
| 19 | elxrge0 13394 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) ↔ ((𝐹‘𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑤))) | |
| 20 | 19 | simprbi 496 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝑤)) |
| 21 | 10, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → 0 ≤ (𝐹‘𝑤)) |
| 22 | 3 | metdsle 24717 | . . . . . . . . . 10 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
| 23 | 2, 22 | sylanl1 680 | . . . . . . . . 9 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ≤ (𝑧𝐷𝑤)) |
| 24 | xrrege0 13110 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹‘𝑤) ∈ ℝ) | |
| 25 | 12, 18, 21, 23, 24 | syl22anc 838 | . . . . . . . 8 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) ∈ ℝ) |
| 26 | 25 | anassrs 467 | . . . . . . 7 ⊢ ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ ℝ) |
| 27 | 26 | ralrimiva 3125 | . . . . . 6 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ) |
| 28 | ffnfv 7073 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤 ∈ 𝑋 (𝐹‘𝑤) ∈ ℝ)) | |
| 29 | 7, 27, 28 | sylanbrc 583 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑋⟶ℝ) |
| 30 | 29 | ex 412 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
| 31 | 30 | exlimdv 1933 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∃𝑧 𝑧 ∈ 𝑆 → 𝐹:𝑋⟶ℝ)) |
| 32 | 1, 31 | biimtrid 242 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ)) |
| 33 | 32 | 3impia 1117 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ↦ cmpt 5183 ran crn 5632 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 infcinf 9368 ℝcr 11043 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 [,]cicc 13285 ∞Metcxmet 21225 Metcmet 21226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-ec 8650 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-2 12225 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 |
| This theorem is referenced by: metdscn2 24722 lebnumlem1 24836 lebnumlem3 24838 |
| Copyright terms: Public domain | W3C validator |