MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsre Structured version   Visualization version   GIF version

Theorem metdsre 23463
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsre ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4312 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑧 𝑧𝑆)
2 metxmet 22946 . . . . . . . . 9 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 23458 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
52, 4sylan 582 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
65adantr 483 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶(0[,]+∞))
76ffnd 6517 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹 Fn 𝑋)
85adantr 483 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
9 simprr 771 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑤𝑋)
108, 9ffvelrnd 6854 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ (0[,]+∞))
11 eliccxr 12826 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → (𝐹𝑤) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ*)
13 simpll 765 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝐷 ∈ (Met‘𝑋))
14 simpr 487 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
1514sselda 3969 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
1615adantrr 715 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 𝑧𝑋)
17 metcl 22944 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ)
1813, 16, 9, 17syl3anc 1367 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝑧𝐷𝑤) ∈ ℝ)
19 elxrge0 12848 . . . . . . . . . . 11 ((𝐹𝑤) ∈ (0[,]+∞) ↔ ((𝐹𝑤) ∈ ℝ* ∧ 0 ≤ (𝐹𝑤)))
2019simprbi 499 . . . . . . . . . 10 ((𝐹𝑤) ∈ (0[,]+∞) → 0 ≤ (𝐹𝑤))
2110, 20syl 17 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → 0 ≤ (𝐹𝑤))
223metdsle 23462 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
232, 22sylanl1 678 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ≤ (𝑧𝐷𝑤))
24 xrrege0 12570 . . . . . . . . 9 ((((𝐹𝑤) ∈ ℝ* ∧ (𝑧𝐷𝑤) ∈ ℝ) ∧ (0 ≤ (𝐹𝑤) ∧ (𝐹𝑤) ≤ (𝑧𝐷𝑤))) → (𝐹𝑤) ∈ ℝ)
2512, 18, 21, 23, 24syl22anc 836 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑆𝑤𝑋)) → (𝐹𝑤) ∈ ℝ)
2625anassrs 470 . . . . . . 7 ((((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ ℝ)
2726ralrimiva 3184 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ)
28 ffnfv 6884 . . . . . 6 (𝐹:𝑋⟶ℝ ↔ (𝐹 Fn 𝑋 ∧ ∀𝑤𝑋 (𝐹𝑤) ∈ ℝ))
297, 27, 28sylanbrc 585 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑧𝑆) → 𝐹:𝑋⟶ℝ)
3029ex 415 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑧𝑆𝐹:𝑋⟶ℝ))
3130exlimdv 1934 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑧 𝑧𝑆𝐹:𝑋⟶ℝ))
321, 31syl5bi 244 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ≠ ∅ → 𝐹:𝑋⟶ℝ))
33323impia 1113 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148  ran crn 5558   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  infcinf 8907  cr 10538  0cc0 10539  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  [,]cicc 12744  ∞Metcxmet 20532  Metcmet 20533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-ec 8293  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542
This theorem is referenced by:  metdscn2  23467  lebnumlem1  23567  lebnumlem3  23569
  Copyright terms: Public domain W3C validator