Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnequiv Structured version   Visualization version   GIF version

Theorem rrnequiv 35115
Description: The supremum metric on ℝ↑𝐼 is equivalent to the n metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑m 𝐼)
rrnequiv.i (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrnequiv ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))

Proof of Theorem rrnequiv
Dummy variables 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrnequiv.d . . . . . 6 𝐷 = (dist‘𝑌)
2 ovex 7191 . . . . . . . 8 (ℂflds ℝ) ∈ V
3 rrnequiv.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
43adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐼 ∈ Fin)
5 rrnequiv.y . . . . . . . . 9 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
6 reex 10630 . . . . . . . . . 10 ℝ ∈ V
7 eqid 2823 . . . . . . . . . . 11 (ℂflds ℝ) = (ℂflds ℝ)
8 eqid 2823 . . . . . . . . . . 11 (Scalar‘ℂfld) = (Scalar‘ℂfld)
97, 8resssca 16652 . . . . . . . . . 10 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
106, 9ax-mp 5 . . . . . . . . 9 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
115, 10pwsval 16761 . . . . . . . 8 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
122, 4, 11sylancr 589 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
1312fveq2d 6676 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
141, 13syl5eq 2870 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
1514oveqd 7175 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺))
16 fconstmpt 5616 . . . . . 6 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
1716oveq2i 7169 . . . . 5 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
18 eqid 2823 . . . . 5 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
19 fvexd 6687 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Scalar‘ℂfld) ∈ V)
202a1i 11 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
2120ralrimiva 3184 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (ℂflds ℝ) ∈ V)
22 simprl 769 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
23 rrnequiv.1 . . . . . . 7 𝑋 = (ℝ ↑m 𝐼)
24 ax-resscn 10596 . . . . . . . . . . 11 ℝ ⊆ ℂ
25 cnfldbas 20551 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
267, 25ressbas2 16557 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
2724, 26ax-mp 5 . . . . . . . . . 10 ℝ = (Base‘(ℂflds ℝ))
285, 27pwsbas 16762 . . . . . . . . 9 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌))
292, 4, 28sylancr 589 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑m 𝐼) = (Base‘𝑌))
3012fveq2d 6676 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3129, 30eqtrd 2858 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3223, 31syl5eq 2870 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3322, 32eleqtrd 2917 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
34 simprr 771 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
3534, 32eleqtrd 2917 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
36 cnfldds 20557 . . . . . . . 8 (abs ∘ − ) = (dist‘ℂfld)
377, 36ressds 16688 . . . . . . 7 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
386, 37ax-mp 5 . . . . . 6 (abs ∘ − ) = (dist‘(ℂflds ℝ))
3938reseq1i 5851 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
40 eqid 2823 . . . . 5 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4117, 18, 19, 4, 21, 33, 35, 27, 39, 40prdsdsval3 16760 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
4215, 41eqtrd 2858 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
43 eqid 2823 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4423, 43rrndstprj1 35110 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑘𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4544an32s 650 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
463, 45sylanl1 678 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4746ralrimiva 3184 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
48 ovex 7191 . . . . . . . 8 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
4948rgenw 3152 . . . . . . 7 𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
50 eqid 2823 . . . . . . . 8 (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))
51 breq1 5071 . . . . . . . 8 (𝑧 = ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5250, 51ralrnmptw 6862 . . . . . . 7 (∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V → (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5349, 52ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
5447, 53sylibr 236 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
5523rrnmet 35109 . . . . . . . . 9 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
564, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝn𝐼) ∈ (Met‘𝑋))
57 metge0 22957 . . . . . . . 8 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
5856, 22, 34, 57syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
59 elsni 4586 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
6059breq1d 5078 . . . . . . 7 (𝑧 ∈ {0} → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ 0 ≤ (𝐹(ℝn𝐼)𝐺)))
6158, 60syl5ibrcom 249 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑧 ∈ {0} → 𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6261ralrimiv 3183 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
63 ralunb 4169 . . . . 5 (∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ∧ ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6454, 62, 63sylanbrc 585 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
6517, 18, 19, 4, 21, 27, 33prdsbascl 16758 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐹𝑘) ∈ ℝ)
6665r19.21bi 3210 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6717, 18, 19, 4, 21, 27, 35prdsbascl 16758 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐺𝑘) ∈ ℝ)
6867r19.21bi 3210 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
6943remet 23400 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
70 metcl 22944 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7169, 70mp3an1 1444 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7266, 68, 71syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7372fmpttd 6881 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))):𝐼⟶ℝ)
7473frnd 6523 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ)
75 ressxr 10687 . . . . . . 7 ℝ ⊆ ℝ*
7674, 75sstrdi 3981 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ*)
77 0xr 10690 . . . . . . . 8 0 ∈ ℝ*
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ∈ ℝ*)
7978snssd 4744 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → {0} ⊆ ℝ*)
8076, 79unssd 4164 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
81 metcl 22944 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8256, 22, 34, 81syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8375, 82sseldi 3967 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ*)
84 supxrleub 12722 . . . . 5 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ (𝐹(ℝn𝐼)𝐺) ∈ ℝ*) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8580, 83, 84syl2anc 586 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8664, 85mpbird 259 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺))
8742, 86eqbrtrd 5090 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺))
88 rzal 4455 . . . . . . 7 (𝐼 = ∅ → ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘))
8922, 23eleqtrdi 2925 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (ℝ ↑m 𝐼))
90 elmapi 8430 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
91 ffn 6516 . . . . . . . . 9 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
9289, 90, 913syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 Fn 𝐼)
9334, 23eleqtrdi 2925 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (ℝ ↑m 𝐼))
94 elmapi 8430 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
95 ffn 6516 . . . . . . . . 9 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
9693, 94, 953syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 Fn 𝐼)
97 eqfnfv 6804 . . . . . . . 8 ((𝐹 Fn 𝐼𝐺 Fn 𝐼) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9892, 96, 97syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9988, 98syl5ibr 248 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 = ∅ → 𝐹 = 𝐺))
10099imp 409 . . . . 5 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → 𝐹 = 𝐺)
101100oveq1d 7173 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) = (𝐺(ℝn𝐼)𝐺))
102 met0 22955 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐺𝑋) → (𝐺(ℝn𝐼)𝐺) = 0)
10356, 34, 102syl2anc 586 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) = 0)
104 hashcl 13720 . . . . . . . . . 10 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
1054, 104syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (♯‘𝐼) ∈ ℕ0)
106105nn0red 11959 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (♯‘𝐼) ∈ ℝ)
107105nn0ge0d 11961 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (♯‘𝐼))
108106, 107resqrtcld 14779 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
1095, 1, 23repwsmet 35114 . . . . . . . . 9 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
1104, 109syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 ∈ (Met‘𝑋))
111 metcl 22944 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) ∈ ℝ)
112110, 22, 34, 111syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ∈ ℝ)
113106, 107sqrtge0d 14782 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘(♯‘𝐼)))
114 metge0 22957 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
115110, 22, 34, 114syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹𝐷𝐺))
116108, 112, 113, 115mulge0d 11219 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
117103, 116eqbrtrd 5090 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
118117adantr 483 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
119101, 118eqbrtrd 5090 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
12082adantr 483 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
121108, 112remulcld 10673 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
122121adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
123 rpre 12400 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
124123ad2antll 727 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
125122, 124readdcld 10672 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟) ∈ ℝ)
1264adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin)
127 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ≠ ∅)
128 eldifsn 4721 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
129126, 127, 128sylanbrc 585 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ (Fin ∖ {∅}))
13022adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐹𝑋)
13134adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐺𝑋)
132112adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℝ)
133 simprr 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
134 hashnncl 13730 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
135126, 134syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
136127, 135mpbird 259 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (♯‘𝐼) ∈ ℕ)
137136nnrpd 12432 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (♯‘𝐼) ∈ ℝ+)
138137rpsqrtcld 14773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℝ+)
139133, 138rpdivcld 12451 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℝ+)
140139rpred 12434 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℝ)
141132, 140readdcld 10672 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ)
142 0red 10646 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ∈ ℝ)
143115adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ≤ (𝐹𝐷𝐺))
144132, 139ltaddrpd 12467 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
145142, 132, 141, 143, 144lelttrd 10800 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
146141, 145elrpd 12431 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ+)
14772adantlr 713 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
148132adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) ∈ ℝ)
149141adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ)
15080ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
151 ssun1 4150 . . . . . . . . . . . . . 14 ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})
152 simpr 487 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → 𝑘𝐼)
15350elrnmpt1 5832 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
154152, 48, 153sylancl 588 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
155151, 154sseldi 3967 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}))
156 supxrub 12720 . . . . . . . . . . . . 13 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
157150, 155, 156syl2anc 586 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
15842ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
159157, 158breqtrrd 5096 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹𝐷𝐺))
160144adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
161147, 148, 149, 159, 160lelttrd 10800 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
162161ralrimiva 3184 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
16323, 43rrndstprj2 35111 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ+ ∧ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))))
164129, 130, 131, 146, 162, 163syl32anc 1374 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))))
165132recnd 10671 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℂ)
166140recnd 10671 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℂ)
167108adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℝ)
168167recnd 10671 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℂ)
169165, 166, 168adddird 10668 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))) = (((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) + ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))))
170165, 168mulcomd 10664 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) = ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
171124recnd 10671 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
172138rpne0d 12439 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ≠ 0)
173171, 168, 172divcan1d 11419 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼))) = 𝑟)
174170, 173oveq12d 7176 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) + ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))) = (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
175169, 174eqtrd 2858 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))) = (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
176164, 175breqtrd 5094 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
177120, 125, 176ltled 10790 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
178177anassrs 470 . . . . 5 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
179178ralrimiva 3184 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
180 alrple 12602 . . . . . 6 (((𝐹(ℝn𝐼)𝐺) ∈ ℝ ∧ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
18182, 121, 180syl2anc 586 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
182181adantr 483 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
183179, 182mpbird 259 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
184119, 183pm2.61dane 3106 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
18587, 184jca 514 1 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cdif 3935  cun 3936  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  ran crn 5558  cres 5559  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  supcsup 8906  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  +crp 12392  chash 13693  csqrt 14594  abscabs 14595  Basecbs 16485  s cress 16486  Scalarcsca 16570  distcds 16576  Xscprds 16721  s cpws 16722  Metcmet 20533  fldccnfld 20547  ncrrn 35105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-prds 16723  df-pws 16725  df-xmet 20540  df-met 20541  df-cnfld 20548  df-rrn 35106
This theorem is referenced by:  rrntotbnd  35116
  Copyright terms: Public domain W3C validator