Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnequiv Structured version   Visualization version   GIF version

Theorem rrnequiv 34056
Description: The supremum metric on ℝ↑𝐼 is equivalent to the n metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrnequiv.i (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrnequiv ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))

Proof of Theorem rrnequiv
Dummy variables 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrnequiv.d . . . . . 6 𝐷 = (dist‘𝑌)
2 ovex 6874 . . . . . . . 8 (ℂflds ℝ) ∈ V
3 rrnequiv.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
43adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐼 ∈ Fin)
5 rrnequiv.y . . . . . . . . 9 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
6 reex 10280 . . . . . . . . . 10 ℝ ∈ V
7 eqid 2765 . . . . . . . . . . 11 (ℂflds ℝ) = (ℂflds ℝ)
8 eqid 2765 . . . . . . . . . . 11 (Scalar‘ℂfld) = (Scalar‘ℂfld)
97, 8resssca 16303 . . . . . . . . . 10 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
106, 9ax-mp 5 . . . . . . . . 9 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
115, 10pwsval 16412 . . . . . . . 8 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
122, 4, 11sylancr 581 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
1312fveq2d 6379 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
141, 13syl5eq 2811 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
1514oveqd 6859 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺))
16 fconstmpt 5333 . . . . . 6 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
1716oveq2i 6853 . . . . 5 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
18 eqid 2765 . . . . 5 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
19 fvexd 6390 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Scalar‘ℂfld) ∈ V)
202a1i 11 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
2120ralrimiva 3113 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (ℂflds ℝ) ∈ V)
22 simprl 787 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
23 rrnequiv.1 . . . . . . 7 𝑋 = (ℝ ↑𝑚 𝐼)
24 ax-resscn 10246 . . . . . . . . . . 11 ℝ ⊆ ℂ
25 cnfldbas 20023 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
267, 25ressbas2 16203 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
2724, 26ax-mp 5 . . . . . . . . . 10 ℝ = (Base‘(ℂflds ℝ))
285, 27pwsbas 16413 . . . . . . . . 9 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑𝑚 𝐼) = (Base‘𝑌))
292, 4, 28sylancr 581 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑𝑚 𝐼) = (Base‘𝑌))
3012fveq2d 6379 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3129, 30eqtrd 2799 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑𝑚 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3223, 31syl5eq 2811 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3322, 32eleqtrd 2846 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
34 simprr 789 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
3534, 32eleqtrd 2846 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
36 cnfldds 20029 . . . . . . . 8 (abs ∘ − ) = (dist‘ℂfld)
377, 36ressds 16339 . . . . . . 7 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
386, 37ax-mp 5 . . . . . 6 (abs ∘ − ) = (dist‘(ℂflds ℝ))
3938reseq1i 5561 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
40 eqid 2765 . . . . 5 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4117, 18, 19, 4, 21, 33, 35, 27, 39, 40prdsdsval3 16411 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
4215, 41eqtrd 2799 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
43 eqid 2765 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4423, 43rrndstprj1 34051 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑘𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4544an32s 642 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
463, 45sylanl1 670 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4746ralrimiva 3113 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
48 ovex 6874 . . . . . . . 8 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
4948rgenw 3071 . . . . . . 7 𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
50 eqid 2765 . . . . . . . 8 (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))
51 breq1 4812 . . . . . . . 8 (𝑧 = ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5250, 51ralrnmpt 6558 . . . . . . 7 (∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V → (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5349, 52ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
5447, 53sylibr 225 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
5523rrnmet 34050 . . . . . . . . 9 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
564, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝn𝐼) ∈ (Met‘𝑋))
57 metge0 22429 . . . . . . . 8 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
5856, 22, 34, 57syl3anc 1490 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
59 elsni 4351 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
6059breq1d 4819 . . . . . . 7 (𝑧 ∈ {0} → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ 0 ≤ (𝐹(ℝn𝐼)𝐺)))
6158, 60syl5ibrcom 238 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑧 ∈ {0} → 𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6261ralrimiv 3112 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
63 ralunb 3956 . . . . 5 (∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ∧ ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6454, 62, 63sylanbrc 578 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
6517, 18, 19, 4, 21, 27, 33prdsbascl 16409 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐹𝑘) ∈ ℝ)
6665r19.21bi 3079 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6717, 18, 19, 4, 21, 27, 35prdsbascl 16409 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐺𝑘) ∈ ℝ)
6867r19.21bi 3079 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
6943remet 22872 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
70 metcl 22416 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7169, 70mp3an1 1572 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7266, 68, 71syl2anc 579 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7372fmpttd 6575 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))):𝐼⟶ℝ)
7473frnd 6230 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ)
75 ressxr 10337 . . . . . . 7 ℝ ⊆ ℝ*
7674, 75syl6ss 3773 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ*)
77 0xr 10340 . . . . . . . 8 0 ∈ ℝ*
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ∈ ℝ*)
7978snssd 4494 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → {0} ⊆ ℝ*)
8076, 79unssd 3951 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
81 metcl 22416 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8256, 22, 34, 81syl3anc 1490 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8375, 82sseldi 3759 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ*)
84 supxrleub 12358 . . . . 5 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ (𝐹(ℝn𝐼)𝐺) ∈ ℝ*) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8580, 83, 84syl2anc 579 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8664, 85mpbird 248 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺))
8742, 86eqbrtrd 4831 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺))
88 rzal 4232 . . . . . . 7 (𝐼 = ∅ → ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘))
8922, 23syl6eleq 2854 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (ℝ ↑𝑚 𝐼))
90 elmapi 8082 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑𝑚 𝐼) → 𝐹:𝐼⟶ℝ)
91 ffn 6223 . . . . . . . . 9 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
9289, 90, 913syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 Fn 𝐼)
9334, 23syl6eleq 2854 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (ℝ ↑𝑚 𝐼))
94 elmapi 8082 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑𝑚 𝐼) → 𝐺:𝐼⟶ℝ)
95 ffn 6223 . . . . . . . . 9 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
9693, 94, 953syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 Fn 𝐼)
97 eqfnfv 6501 . . . . . . . 8 ((𝐹 Fn 𝐼𝐺 Fn 𝐼) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9892, 96, 97syl2anc 579 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9988, 98syl5ibr 237 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 = ∅ → 𝐹 = 𝐺))
10099imp 395 . . . . 5 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → 𝐹 = 𝐺)
101100oveq1d 6857 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) = (𝐺(ℝn𝐼)𝐺))
102 met0 22427 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐺𝑋) → (𝐺(ℝn𝐼)𝐺) = 0)
10356, 34, 102syl2anc 579 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) = 0)
104 hashcl 13349 . . . . . . . . . 10 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
1054, 104syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (♯‘𝐼) ∈ ℕ0)
106105nn0red 11599 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (♯‘𝐼) ∈ ℝ)
107105nn0ge0d 11601 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (♯‘𝐼))
108106, 107resqrtcld 14441 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
1095, 1, 23repwsmet 34055 . . . . . . . . 9 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
1104, 109syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 ∈ (Met‘𝑋))
111 metcl 22416 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) ∈ ℝ)
112110, 22, 34, 111syl3anc 1490 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ∈ ℝ)
113106, 107sqrtge0d 14444 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘(♯‘𝐼)))
114 metge0 22429 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
115110, 22, 34, 114syl3anc 1490 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹𝐷𝐺))
116108, 112, 113, 115mulge0d 10858 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
117103, 116eqbrtrd 4831 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
118117adantr 472 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
119101, 118eqbrtrd 4831 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
12082adantr 472 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
121108, 112remulcld 10324 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
122121adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
123 rpre 12036 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
124123ad2antll 720 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
125122, 124readdcld 10323 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟) ∈ ℝ)
1264adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin)
127 simprl 787 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ≠ ∅)
128 eldifsn 4472 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
129126, 127, 128sylanbrc 578 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ (Fin ∖ {∅}))
13022adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐹𝑋)
13134adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐺𝑋)
132112adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℝ)
133 simprr 789 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
134 hashnncl 13359 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
135126, 134syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
136127, 135mpbird 248 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (♯‘𝐼) ∈ ℕ)
137136nnrpd 12068 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (♯‘𝐼) ∈ ℝ+)
138137rpsqrtcld 14435 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℝ+)
139133, 138rpdivcld 12087 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℝ+)
140139rpred 12070 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℝ)
141132, 140readdcld 10323 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ)
142 0red 10297 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ∈ ℝ)
143115adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ≤ (𝐹𝐷𝐺))
144132, 139ltaddrpd 12103 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
145142, 132, 141, 143, 144lelttrd 10449 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
146141, 145elrpd 12067 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ+)
14772adantlr 706 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
148132adantr 472 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) ∈ ℝ)
149141adantr 472 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ)
15080ad2antrr 717 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
151 ssun1 3938 . . . . . . . . . . . . . 14 ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})
152 simpr 477 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → 𝑘𝐼)
15350elrnmpt1 5543 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
154152, 48, 153sylancl 580 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
155151, 154sseldi 3759 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}))
156 supxrub 12356 . . . . . . . . . . . . 13 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
157150, 155, 156syl2anc 579 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
15842ad2antrr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
159157, 158breqtrrd 4837 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹𝐷𝐺))
160144adantr 472 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
161147, 148, 149, 159, 160lelttrd 10449 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
162161ralrimiva 3113 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
16323, 43rrndstprj2 34052 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ+ ∧ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))))
164129, 130, 131, 146, 162, 163syl32anc 1497 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))))
165132recnd 10322 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℂ)
166140recnd 10322 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℂ)
167108adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℝ)
168167recnd 10322 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℂ)
169165, 166, 168adddird 10319 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))) = (((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) + ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))))
170165, 168mulcomd 10315 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) = ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
171124recnd 10322 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
172138rpne0d 12075 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ≠ 0)
173171, 168, 172divcan1d 11056 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼))) = 𝑟)
174170, 173oveq12d 6860 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) + ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))) = (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
175169, 174eqtrd 2799 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))) = (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
176164, 175breqtrd 4835 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
177120, 125, 176ltled 10439 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
178177anassrs 459 . . . . 5 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
179178ralrimiva 3113 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
180 alrple 12239 . . . . . 6 (((𝐹(ℝn𝐼)𝐺) ∈ ℝ ∧ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
18182, 121, 180syl2anc 579 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
182181adantr 472 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
183179, 182mpbird 248 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
184119, 183pm2.61dane 3024 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
18587, 184jca 507 1 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  cdif 3729  cun 3730  wss 3732  c0 4079  {csn 4334   class class class wbr 4809  cmpt 4888   × cxp 5275  ran crn 5278  cres 5279  ccom 5281   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  supcsup 8553  cc 10187  cr 10188  0cc0 10189   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  cn 11274  0cn0 11538  +crp 12028  chash 13321  csqrt 14258  abscabs 14259  Basecbs 16130  s cress 16131  Scalarcsca 16217  distcds 16223  Xscprds 16372  s cpws 16373  Metcmet 20005  fldccnfld 20019  ncrrn 34046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-prds 16374  df-pws 16376  df-xmet 20012  df-met 20013  df-cnfld 20020  df-rrn 34047
This theorem is referenced by:  rrntotbnd  34057
  Copyright terms: Public domain W3C validator