Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnequiv Structured version   Visualization version   GIF version

Theorem rrnequiv 35730
Description: The supremum metric on ℝ↑𝐼 is equivalent to the n metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑m 𝐼)
rrnequiv.i (𝜑𝐼 ∈ Fin)
Assertion
Ref Expression
rrnequiv ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))

Proof of Theorem rrnequiv
Dummy variables 𝑘 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrnequiv.d . . . . . 6 𝐷 = (dist‘𝑌)
2 ovex 7246 . . . . . . . 8 (ℂflds ℝ) ∈ V
3 rrnequiv.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
43adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐼 ∈ Fin)
5 rrnequiv.y . . . . . . . . 9 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
6 reex 10820 . . . . . . . . . 10 ℝ ∈ V
7 eqid 2737 . . . . . . . . . . 11 (ℂflds ℝ) = (ℂflds ℝ)
8 eqid 2737 . . . . . . . . . . 11 (Scalar‘ℂfld) = (Scalar‘ℂfld)
97, 8resssca 16876 . . . . . . . . . 10 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
106, 9ax-mp 5 . . . . . . . . 9 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
115, 10pwsval 16991 . . . . . . . 8 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
122, 4, 11sylancr 590 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
1312fveq2d 6721 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
141, 13syl5eq 2790 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
1514oveqd 7230 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺))
16 fconstmpt 5611 . . . . . 6 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
1716oveq2i 7224 . . . . 5 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
18 eqid 2737 . . . . 5 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
19 fvexd 6732 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Scalar‘ℂfld) ∈ V)
202a1i 11 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
2120ralrimiva 3105 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (ℂflds ℝ) ∈ V)
22 simprl 771 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
23 rrnequiv.1 . . . . . . 7 𝑋 = (ℝ ↑m 𝐼)
24 ax-resscn 10786 . . . . . . . . . . 11 ℝ ⊆ ℂ
25 cnfldbas 20367 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
267, 25ressbas2 16791 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
2724, 26ax-mp 5 . . . . . . . . . 10 ℝ = (Base‘(ℂflds ℝ))
285, 27pwsbas 16992 . . . . . . . . 9 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌))
292, 4, 28sylancr 590 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑m 𝐼) = (Base‘𝑌))
3012fveq2d 6721 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3129, 30eqtrd 2777 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3223, 31syl5eq 2790 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3322, 32eleqtrd 2840 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
34 simprr 773 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
3534, 32eleqtrd 2840 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
36 cnfldds 20373 . . . . . . . 8 (abs ∘ − ) = (dist‘ℂfld)
377, 36ressds 16917 . . . . . . 7 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
386, 37ax-mp 5 . . . . . 6 (abs ∘ − ) = (dist‘(ℂflds ℝ))
3938reseq1i 5847 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
40 eqid 2737 . . . . 5 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4117, 18, 19, 4, 21, 33, 35, 27, 39, 40prdsdsval3 16990 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
4215, 41eqtrd 2777 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
43 eqid 2737 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4423, 43rrndstprj1 35725 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑘𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4544an32s 652 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
463, 45sylanl1 680 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
4746ralrimiva 3105 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
48 ovex 7246 . . . . . . . 8 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
4948rgenw 3073 . . . . . . 7 𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V
50 eqid 2737 . . . . . . . 8 (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))
51 breq1 5056 . . . . . . . 8 (𝑧 = ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5250, 51ralrnmptw 6913 . . . . . . 7 (∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V → (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺)))
5349, 52ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹(ℝn𝐼)𝐺))
5447, 53sylibr 237 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
5523rrnmet 35724 . . . . . . . . 9 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
564, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ℝn𝐼) ∈ (Met‘𝑋))
57 metge0 23243 . . . . . . . 8 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
5856, 22, 34, 57syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹(ℝn𝐼)𝐺))
59 elsni 4558 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
6059breq1d 5063 . . . . . . 7 (𝑧 ∈ {0} → (𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ 0 ≤ (𝐹(ℝn𝐼)𝐺)))
6158, 60syl5ibrcom 250 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑧 ∈ {0} → 𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6261ralrimiv 3104 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
63 ralunb 4105 . . . . 5 (∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ↔ (∀𝑧 ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)))𝑧 ≤ (𝐹(ℝn𝐼)𝐺) ∧ ∀𝑧 ∈ {0}𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
6454, 62, 63sylanbrc 586 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺))
6517, 18, 19, 4, 21, 27, 33prdsbascl 16988 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐹𝑘) ∈ ℝ)
6665r19.21bi 3130 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6717, 18, 19, 4, 21, 27, 35prdsbascl 16988 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ∀𝑘𝐼 (𝐺𝑘) ∈ ℝ)
6867r19.21bi 3130 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
6943remet 23687 . . . . . . . . . . 11 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
70 metcl 23230 . . . . . . . . . . 11 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7169, 70mp3an1 1450 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7266, 68, 71syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
7372fmpttd 6932 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))):𝐼⟶ℝ)
7473frnd 6553 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ)
75 ressxr 10877 . . . . . . 7 ℝ ⊆ ℝ*
7674, 75sstrdi 3913 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ ℝ*)
77 0xr 10880 . . . . . . . 8 0 ∈ ℝ*
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ∈ ℝ*)
7978snssd 4722 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → {0} ⊆ ℝ*)
8076, 79unssd 4100 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
81 metcl 23230 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8256, 22, 34, 81syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
8375, 82sseldi 3899 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ*)
84 supxrleub 12916 . . . . 5 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ (𝐹(ℝn𝐼)𝐺) ∈ ℝ*) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8580, 83, 84syl2anc 587 . . . 4 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺) ↔ ∀𝑧 ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})𝑧 ≤ (𝐹(ℝn𝐼)𝐺)))
8664, 85mpbird 260 . . 3 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ) ≤ (𝐹(ℝn𝐼)𝐺))
8742, 86eqbrtrd 5075 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺))
88 rzal 4420 . . . . . . 7 (𝐼 = ∅ → ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘))
8922, 23eleqtrdi 2848 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (ℝ ↑m 𝐼))
90 elmapi 8530 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
91 ffn 6545 . . . . . . . . 9 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
9289, 90, 913syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 Fn 𝐼)
9334, 23eleqtrdi 2848 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (ℝ ↑m 𝐼))
94 elmapi 8530 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
95 ffn 6545 . . . . . . . . 9 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
9693, 94, 953syl 18 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 Fn 𝐼)
97 eqfnfv 6852 . . . . . . . 8 ((𝐹 Fn 𝐼𝐺 Fn 𝐼) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9892, 96, 97syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 = 𝐺 ↔ ∀𝑘𝐼 (𝐹𝑘) = (𝐺𝑘)))
9988, 98syl5ibr 249 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 = ∅ → 𝐹 = 𝐺))
10099imp 410 . . . . 5 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → 𝐹 = 𝐺)
101100oveq1d 7228 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) = (𝐺(ℝn𝐼)𝐺))
102 met0 23241 . . . . . . 7 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝐺𝑋) → (𝐺(ℝn𝐼)𝐺) = 0)
10356, 34, 102syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) = 0)
104 hashcl 13923 . . . . . . . . . 10 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
1054, 104syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (♯‘𝐼) ∈ ℕ0)
106105nn0red 12151 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (♯‘𝐼) ∈ ℝ)
107105nn0ge0d 12153 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (♯‘𝐼))
108106, 107resqrtcld 14981 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
1095, 1, 23repwsmet 35729 . . . . . . . . 9 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
1104, 109syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 𝐷 ∈ (Met‘𝑋))
111 metcl 23230 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) ∈ ℝ)
112110, 22, 34, 111syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) ∈ ℝ)
113106, 107sqrtge0d 14984 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘(♯‘𝐼)))
114 metge0 23243 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
115110, 22, 34, 114syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (𝐹𝐷𝐺))
116108, 112, 113, 115mulge0d 11409 . . . . . 6 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
117103, 116eqbrtrd 5075 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
118117adantr 484 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐺(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
119101, 118eqbrtrd 5075 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 = ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
12082adantr 484 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ∈ ℝ)
121108, 112remulcld 10863 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
122121adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ)
123 rpre 12594 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
124123ad2antll 729 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
125122, 124readdcld 10862 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟) ∈ ℝ)
1264adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin)
127 simprl 771 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ≠ ∅)
128 eldifsn 4700 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
129126, 127, 128sylanbrc 586 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ (Fin ∖ {∅}))
13022adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐹𝑋)
13134adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝐺𝑋)
132112adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℝ)
133 simprr 773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
134 hashnncl 13933 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
135126, 134syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
136127, 135mpbird 260 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (♯‘𝐼) ∈ ℕ)
137136nnrpd 12626 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (♯‘𝐼) ∈ ℝ+)
138137rpsqrtcld 14975 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℝ+)
139133, 138rpdivcld 12645 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℝ+)
140139rpred 12628 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℝ)
141132, 140readdcld 10862 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ)
142 0red 10836 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ∈ ℝ)
143115adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 ≤ (𝐹𝐷𝐺))
144132, 139ltaddrpd 12661 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
145142, 132, 141, 143, 144lelttrd 10990 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 0 < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
146141, 145elrpd 12625 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ+)
14772adantlr 715 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ℝ)
148132adantr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) ∈ ℝ)
149141adantr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ)
15080ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ*)
151 ssun1 4086 . . . . . . . . . . . . . 14 ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ⊆ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})
152 simpr 488 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → 𝑘𝐼)
15350elrnmpt1 5827 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ V) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
154152, 48, 153sylancl 589 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))))
155151, 154sseldi 3899 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}))
156 supxrub 12914 . . . . . . . . . . . . 13 (((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}) ⊆ ℝ* ∧ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ∈ (ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0})) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
157150, 155, 156syl2anc 587 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
15842ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) = sup((ran (𝑘𝐼 ↦ ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘))) ∪ {0}), ℝ*, < ))
159157, 158breqtrrd 5081 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) ≤ (𝐹𝐷𝐺))
160144adantr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → (𝐹𝐷𝐺) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
161147, 148, 149, 159, 160lelttrd 10990 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) ∧ 𝑘𝐼) → ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
162161ralrimiva 3105 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))
16323, 43rrndstprj2 35726 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) ∈ ℝ+ ∧ ∀𝑘𝐼 ((𝐹𝑘)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝑘)) < ((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))))) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))))
164129, 130, 131, 146, 162, 163syl32anc 1380 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))))
165132recnd 10861 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹𝐷𝐺) ∈ ℂ)
166140recnd 10861 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (√‘(♯‘𝐼))) ∈ ℂ)
167108adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℝ)
168167recnd 10861 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ∈ ℂ)
169165, 166, 168adddird 10858 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))) = (((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) + ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))))
170165, 168mulcomd 10854 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) = ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
171124recnd 10861 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
172138rpne0d 12633 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (√‘(♯‘𝐼)) ≠ 0)
173171, 168, 172divcan1d 11609 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼))) = 𝑟)
174170, 173oveq12d 7231 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) · (√‘(♯‘𝐼))) + ((𝑟 / (√‘(♯‘𝐼))) · (√‘(♯‘𝐼)))) = (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
175169, 174eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (((𝐹𝐷𝐺) + (𝑟 / (√‘(♯‘𝐼)))) · (√‘(♯‘𝐼))) = (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
176164, 175breqtrd 5079 . . . . . . 7 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) < (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
177120, 125, 176ltled 10980 . . . . . 6 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ (𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+)) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
178177anassrs 471 . . . . 5 ((((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
179178ralrimiva 3105 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟))
180 alrple 12796 . . . . . 6 (((𝐹(ℝn𝐼)𝐺) ∈ ℝ ∧ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ∈ ℝ) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
18182, 121, 180syl2anc 587 . . . . 5 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
182181adantr 484 . . . 4 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → ((𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) ↔ ∀𝑟 ∈ ℝ+ (𝐹(ℝn𝐼)𝐺) ≤ (((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)) + 𝑟)))
183179, 182mpbird 260 . . 3 (((𝜑 ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐼 ≠ ∅) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
184119, 183pm2.61dane 3029 . 2 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))
18587, 184jca 515 1 ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  Vcvv 3408  cdif 3863  cun 3864  wss 3866  c0 4237  {csn 4541   class class class wbr 5053  cmpt 5135   × cxp 5549  ran crn 5552  cres 5553  ccom 5555   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  Fincfn 8626  supcsup 9056  cc 10727  cr 10728  0cc0 10729   + caddc 10732   · cmul 10734  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  0cn0 12090  +crp 12586  chash 13896  csqrt 14796  abscabs 14797  Basecbs 16760  s cress 16784  Scalarcsca 16805  distcds 16811  Xscprds 16950  s cpws 16951  Metcmet 20349  fldccnfld 20363  ncrrn 35720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-prds 16952  df-pws 16954  df-xmet 20356  df-met 20357  df-cnfld 20364  df-rrn 35721
This theorem is referenced by:  rrntotbnd  35731
  Copyright terms: Public domain W3C validator