Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tcphex | Structured version Visualization version GIF version |
Description: Lemma for tcphbas 24432 and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
tcphex.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
tcphex | ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) | |
2 | fvrn0 6834 | . . . 4 ⊢ (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅}) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝑉 → (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅})) |
4 | 1, 3 | fmpti 7018 | . 2 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) |
5 | tcphex.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
6 | 5 | fvexi 6818 | . 2 ⊢ 𝑉 ∈ V |
7 | cnex 11002 | . . . 4 ⊢ ℂ ∈ V | |
8 | sqrtf 15124 | . . . . 5 ⊢ √:ℂ⟶ℂ | |
9 | frn 6637 | . . . . 5 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ran √ ⊆ ℂ |
11 | 7, 10 | ssexi 5255 | . . 3 ⊢ ran √ ∈ V |
12 | p0ex 5316 | . . 3 ⊢ {∅} ∈ V | |
13 | 11, 12 | unex 7628 | . 2 ⊢ (ran √ ∪ {∅}) ∈ V |
14 | fex2 7812 | . 2 ⊢ (((𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) ∧ 𝑉 ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V) | |
15 | 4, 6, 13, 14 | mp3an 1461 | 1 ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∪ cun 3890 ⊆ wss 3892 ∅c0 4262 {csn 4565 ↦ cmpt 5164 ran crn 5601 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℂcc 10919 √csqrt 14993 Basecbs 16961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 |
This theorem is referenced by: tcphbas 24432 tchplusg 24433 tcphmulr 24435 tcphsca 24436 tcphvsca 24437 tcphip 24438 tcphtopn 24439 tcphds 24444 rrxdim 31746 |
Copyright terms: Public domain | W3C validator |