MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphex Structured version   Visualization version   GIF version

Theorem tcphex 25273
Description: Lemma for tcphbas 25275 and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
tcphex.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
tcphex (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   , (𝑥)   𝑊(𝑥)

Proof of Theorem tcphex
StepHypRef Expression
1 eqid 2736 . . 3 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
2 fvrn0 6941 . . . 4 (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅})
32a1i 11 . . 3 (𝑥𝑉 → (√‘(𝑥 , 𝑥)) ∈ (ran √ ∪ {∅}))
41, 3fmpti 7136 . 2 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅})
5 tcphex.v . . 3 𝑉 = (Base‘𝑊)
65fvexi 6925 . 2 𝑉 ∈ V
7 cnex 11240 . . . 4 ℂ ∈ V
8 sqrtf 15405 . . . . 5 √:ℂ⟶ℂ
9 frn 6748 . . . . 5 (√:ℂ⟶ℂ → ran √ ⊆ ℂ)
108, 9ax-mp 5 . . . 4 ran √ ⊆ ℂ
117, 10ssexi 5329 . . 3 ran √ ∈ V
12 p0ex 5391 . . 3 {∅} ∈ V
1311, 12unex 7767 . 2 (ran √ ∪ {∅}) ∈ V
14 fex2 7963 . 2 (((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))):𝑉⟶(ran √ ∪ {∅}) ∧ 𝑉 ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V)
154, 6, 13, 14mp3an 1461 1 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2107  Vcvv 3479  cun 3962  wss 3964  c0 4340  {csn 4632  cmpt 5232  ran crn 5691  wf 6562  cfv 6566  (class class class)co 7435  cc 11157  csqrt 15275  Basecbs 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-sup 9486  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-n0 12531  df-z 12618  df-uz 12883  df-rp 13039  df-seq 14046  df-exp 14106  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278
This theorem is referenced by:  tcphbas  25275  tchplusg  25276  tcphmulr  25278  tcphsca  25279  tcphvsca  25280  tcphip  25281  tcphtopn  25282  tcphds  25287  rrxdim  33655
  Copyright terms: Public domain W3C validator